Genomic selection for salinity tolerance in japonica rice
Improving plant performance in salinity-prone conditions is a significant challenge in breeding programs. Genomic selection is currently integrated into many plant breeding programs as a tool for increasing selection intensity and precision for complex traits and for reducing breeding cycle length....
Gespeichert in:
Veröffentlicht in: | PloS one 2023-09, Vol.18 (9), p.e0291833 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e0291833 |
container_title | PloS one |
container_volume | 18 |
creator | Bartholomé, Jérôme Frouin, Julien Brottier, Laurent Cao, Tuong-Vi Boisnard, Arnaud Ahmadi, Nourollah Courtois, Brigitte |
description | Improving plant performance in salinity-prone conditions is a significant challenge in breeding programs. Genomic selection is currently integrated into many plant breeding programs as a tool for increasing selection intensity and precision for complex traits and for reducing breeding cycle length. A rice reference panel (RP) of 241 Oryza sativa L. japonica accessions genotyped with 20,255 SNPs grown in control and mild salinity stress conditions was evaluated at the vegetative stage for eight morphological traits and ion mass fractions (Na and K). Weak to strong genotype-by-condition interactions were found for the traits considered. Cross-validation showed that the predictive ability of genomic prediction methods ranged from 0.25 to 0.64 for multi-environment models with morphological traits and from 0.05 to 0.40 for indices of stress response and ion mass fractions. The performances of a breeding population (BP) comprising 393 japonica accessions were predicted with models trained on the RP. For validation of the predictive performances of the models, a subset of 41 accessions was selected from the BP and phenotyped under the same experimental conditions as the RP. The predictive abilities estimated on this subset ranged from 0.00 to 0.66 for the multi-environment models, depending on the traits, and were strongly correlated with the predictive abilities on cross-validation in the RP in salt condition (r = 0.69). We show here that genomic selection is efficient for predicting the salt stress tolerance of breeding lines. Genomic selection could improve the efficiency of rice breeding strategies for salinity-prone environments. |
doi_str_mv | 10.1371/journal.pone.0291833 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2869566690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A766801678</galeid><doaj_id>oai_doaj_org_article_2cb4bba9b79e4e129ff96ad7b1f35b2d</doaj_id><sourcerecordid>A766801678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c676t-7539c4e511fd49c09f99b959aad411f11fe09934b63db048609026267f3d919f3</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BshsFYL5Lpy5LP1QhlawOBwr5uhSzLiYJipZJd1n8_eXFLXHoxbLA4ft73-Byfk2VvMZpjKvDnre9Dq9x871szRwRwSemz7BQDJTNOEH1-dD7JXsW4RaigJecvsxMqRMEJFKcZXJrW76zOo3FGd9a3eeNDHpWzre3u8s47E1SrTW7bfKtSMqtVHqw2r7MXjXLRvBmfZ9mvb19_XlzNVteXy4vFaqa54N1MFBQ0MwXGTc1AI2gAKihAqZqlWLoNAqCs4rSuECs5AkQ44aKhNWBo6Fn2_uC7dz7KseooScmh4JwDSsTyQNRebeU-2J0Kd9IrK_8FfFhLFTqrnZFEV6yqFFQCDDOYQNMAV7WocEOLitTJ68uYra92ptam7YJyE9Ppm9Zu5NrfSpyaixAVyeH84LB5pLtarOQQQ4yVDHO4xYn9NGYL_qY3sZM7G7VxTrXG90ORAmEmgJCEfniEPt2KkVqrVK1tG58-Ug-mciE4LxHmokzU_AkqXbVJo5DmqbEpPhGcTwSJ6cyfbq36GOXyx_f_Z69_T9mPR-zGKNdtonf9MIdxCrIDqIOPMZjmobMYyWEd7rshh3WQ4zok2bvjv_kgup9_-hdEcgKc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869566690</pqid></control><display><type>article</type><title>Genomic selection for salinity tolerance in japonica rice</title><source>Open Access: PubMed Central</source><source>PLoS</source><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Bartholomé, Jérôme ; Frouin, Julien ; Brottier, Laurent ; Cao, Tuong-Vi ; Boisnard, Arnaud ; Ahmadi, Nourollah ; Courtois, Brigitte</creator><creatorcontrib>Bartholomé, Jérôme ; Frouin, Julien ; Brottier, Laurent ; Cao, Tuong-Vi ; Boisnard, Arnaud ; Ahmadi, Nourollah ; Courtois, Brigitte</creatorcontrib><description>Improving plant performance in salinity-prone conditions is a significant challenge in breeding programs. Genomic selection is currently integrated into many plant breeding programs as a tool for increasing selection intensity and precision for complex traits and for reducing breeding cycle length. A rice reference panel (RP) of 241 Oryza sativa L. japonica accessions genotyped with 20,255 SNPs grown in control and mild salinity stress conditions was evaluated at the vegetative stage for eight morphological traits and ion mass fractions (Na and K). Weak to strong genotype-by-condition interactions were found for the traits considered. Cross-validation showed that the predictive ability of genomic prediction methods ranged from 0.25 to 0.64 for multi-environment models with morphological traits and from 0.05 to 0.40 for indices of stress response and ion mass fractions. The performances of a breeding population (BP) comprising 393 japonica accessions were predicted with models trained on the RP. For validation of the predictive performances of the models, a subset of 41 accessions was selected from the BP and phenotyped under the same experimental conditions as the RP. The predictive abilities estimated on this subset ranged from 0.00 to 0.66 for the multi-environment models, depending on the traits, and were strongly correlated with the predictive abilities on cross-validation in the RP in salt condition (r = 0.69). We show here that genomic selection is efficient for predicting the salt stress tolerance of breeding lines. Genomic selection could improve the efficiency of rice breeding strategies for salinity-prone environments.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0291833</identifier><identifier>PMID: 37756295</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abiotic stress ; Accuracy ; Analysis ; Biology and Life Sciences ; Climate change ; Ecology and Environmental Sciences ; Environment models ; Evaluation ; Genetic aspects ; Genetics ; Genomes ; Genomics ; Genotype ; Genotypes ; Growth ; Influence ; Life Sciences ; Missing data ; Modelling ; Oryza - genetics ; Oryza sativa japonica ; People and Places ; Performance prediction ; Physical Sciences ; Plant Breeding ; Plants genetics ; Research and Analysis Methods ; Rice ; Salinity ; Salinity effects ; Salinity tolerance ; Salt ; Salt Tolerance - genetics ; Soils, Salts in</subject><ispartof>PloS one, 2023-09, Vol.18 (9), p.e0291833</ispartof><rights>Copyright: © 2023 Bartholomé et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Bartholomé et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 Bartholomé et al 2023 Bartholomé et al</rights><rights>2023 Bartholomé et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c676t-7539c4e511fd49c09f99b959aad411f11fe09934b63db048609026267f3d919f3</cites><orcidid>0000-0003-2118-7102 ; 0000-0002-0855-3828 ; 0000-0002-8584-2199 ; 0000-0003-1591-0755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530037/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530037/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37756295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-04484169$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartholomé, Jérôme</creatorcontrib><creatorcontrib>Frouin, Julien</creatorcontrib><creatorcontrib>Brottier, Laurent</creatorcontrib><creatorcontrib>Cao, Tuong-Vi</creatorcontrib><creatorcontrib>Boisnard, Arnaud</creatorcontrib><creatorcontrib>Ahmadi, Nourollah</creatorcontrib><creatorcontrib>Courtois, Brigitte</creatorcontrib><title>Genomic selection for salinity tolerance in japonica rice</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Improving plant performance in salinity-prone conditions is a significant challenge in breeding programs. Genomic selection is currently integrated into many plant breeding programs as a tool for increasing selection intensity and precision for complex traits and for reducing breeding cycle length. A rice reference panel (RP) of 241 Oryza sativa L. japonica accessions genotyped with 20,255 SNPs grown in control and mild salinity stress conditions was evaluated at the vegetative stage for eight morphological traits and ion mass fractions (Na and K). Weak to strong genotype-by-condition interactions were found for the traits considered. Cross-validation showed that the predictive ability of genomic prediction methods ranged from 0.25 to 0.64 for multi-environment models with morphological traits and from 0.05 to 0.40 for indices of stress response and ion mass fractions. The performances of a breeding population (BP) comprising 393 japonica accessions were predicted with models trained on the RP. For validation of the predictive performances of the models, a subset of 41 accessions was selected from the BP and phenotyped under the same experimental conditions as the RP. The predictive abilities estimated on this subset ranged from 0.00 to 0.66 for the multi-environment models, depending on the traits, and were strongly correlated with the predictive abilities on cross-validation in the RP in salt condition (r = 0.69). We show here that genomic selection is efficient for predicting the salt stress tolerance of breeding lines. Genomic selection could improve the efficiency of rice breeding strategies for salinity-prone environments.</description><subject>Abiotic stress</subject><subject>Accuracy</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Climate change</subject><subject>Ecology and Environmental Sciences</subject><subject>Environment models</subject><subject>Evaluation</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Growth</subject><subject>Influence</subject><subject>Life Sciences</subject><subject>Missing data</subject><subject>Modelling</subject><subject>Oryza - genetics</subject><subject>Oryza sativa japonica</subject><subject>People and Places</subject><subject>Performance prediction</subject><subject>Physical Sciences</subject><subject>Plant Breeding</subject><subject>Plants genetics</subject><subject>Research and Analysis Methods</subject><subject>Rice</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity tolerance</subject><subject>Salt</subject><subject>Salt Tolerance - genetics</subject><subject>Soils, Salts in</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BshsFYL5Lpy5LP1QhlawOBwr5uhSzLiYJipZJd1n8_eXFLXHoxbLA4ft73-Byfk2VvMZpjKvDnre9Dq9x871szRwRwSemz7BQDJTNOEH1-dD7JXsW4RaigJecvsxMqRMEJFKcZXJrW76zOo3FGd9a3eeNDHpWzre3u8s47E1SrTW7bfKtSMqtVHqw2r7MXjXLRvBmfZ9mvb19_XlzNVteXy4vFaqa54N1MFBQ0MwXGTc1AI2gAKihAqZqlWLoNAqCs4rSuECs5AkQ44aKhNWBo6Fn2_uC7dz7KseooScmh4JwDSsTyQNRebeU-2J0Kd9IrK_8FfFhLFTqrnZFEV6yqFFQCDDOYQNMAV7WocEOLitTJ68uYra92ptam7YJyE9Ppm9Zu5NrfSpyaixAVyeH84LB5pLtarOQQQ4yVDHO4xYn9NGYL_qY3sZM7G7VxTrXG90ORAmEmgJCEfniEPt2KkVqrVK1tG58-Ug-mciE4LxHmokzU_AkqXbVJo5DmqbEpPhGcTwSJ6cyfbq36GOXyx_f_Z69_T9mPR-zGKNdtonf9MIdxCrIDqIOPMZjmobMYyWEd7rshh3WQ4zok2bvjv_kgup9_-hdEcgKc</recordid><startdate>20230927</startdate><enddate>20230927</enddate><creator>Bartholomé, Jérôme</creator><creator>Frouin, Julien</creator><creator>Brottier, Laurent</creator><creator>Cao, Tuong-Vi</creator><creator>Boisnard, Arnaud</creator><creator>Ahmadi, Nourollah</creator><creator>Courtois, Brigitte</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2118-7102</orcidid><orcidid>https://orcid.org/0000-0002-0855-3828</orcidid><orcidid>https://orcid.org/0000-0002-8584-2199</orcidid><orcidid>https://orcid.org/0000-0003-1591-0755</orcidid></search><sort><creationdate>20230927</creationdate><title>Genomic selection for salinity tolerance in japonica rice</title><author>Bartholomé, Jérôme ; Frouin, Julien ; Brottier, Laurent ; Cao, Tuong-Vi ; Boisnard, Arnaud ; Ahmadi, Nourollah ; Courtois, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c676t-7539c4e511fd49c09f99b959aad411f11fe09934b63db048609026267f3d919f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abiotic stress</topic><topic>Accuracy</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Climate change</topic><topic>Ecology and Environmental Sciences</topic><topic>Environment models</topic><topic>Evaluation</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Growth</topic><topic>Influence</topic><topic>Life Sciences</topic><topic>Missing data</topic><topic>Modelling</topic><topic>Oryza - genetics</topic><topic>Oryza sativa japonica</topic><topic>People and Places</topic><topic>Performance prediction</topic><topic>Physical Sciences</topic><topic>Plant Breeding</topic><topic>Plants genetics</topic><topic>Research and Analysis Methods</topic><topic>Rice</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity tolerance</topic><topic>Salt</topic><topic>Salt Tolerance - genetics</topic><topic>Soils, Salts in</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartholomé, Jérôme</creatorcontrib><creatorcontrib>Frouin, Julien</creatorcontrib><creatorcontrib>Brottier, Laurent</creatorcontrib><creatorcontrib>Cao, Tuong-Vi</creatorcontrib><creatorcontrib>Boisnard, Arnaud</creatorcontrib><creatorcontrib>Ahmadi, Nourollah</creatorcontrib><creatorcontrib>Courtois, Brigitte</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartholomé, Jérôme</au><au>Frouin, Julien</au><au>Brottier, Laurent</au><au>Cao, Tuong-Vi</au><au>Boisnard, Arnaud</au><au>Ahmadi, Nourollah</au><au>Courtois, Brigitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic selection for salinity tolerance in japonica rice</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-09-27</date><risdate>2023</risdate><volume>18</volume><issue>9</issue><spage>e0291833</spage><pages>e0291833-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Improving plant performance in salinity-prone conditions is a significant challenge in breeding programs. Genomic selection is currently integrated into many plant breeding programs as a tool for increasing selection intensity and precision for complex traits and for reducing breeding cycle length. A rice reference panel (RP) of 241 Oryza sativa L. japonica accessions genotyped with 20,255 SNPs grown in control and mild salinity stress conditions was evaluated at the vegetative stage for eight morphological traits and ion mass fractions (Na and K). Weak to strong genotype-by-condition interactions were found for the traits considered. Cross-validation showed that the predictive ability of genomic prediction methods ranged from 0.25 to 0.64 for multi-environment models with morphological traits and from 0.05 to 0.40 for indices of stress response and ion mass fractions. The performances of a breeding population (BP) comprising 393 japonica accessions were predicted with models trained on the RP. For validation of the predictive performances of the models, a subset of 41 accessions was selected from the BP and phenotyped under the same experimental conditions as the RP. The predictive abilities estimated on this subset ranged from 0.00 to 0.66 for the multi-environment models, depending on the traits, and were strongly correlated with the predictive abilities on cross-validation in the RP in salt condition (r = 0.69). We show here that genomic selection is efficient for predicting the salt stress tolerance of breeding lines. Genomic selection could improve the efficiency of rice breeding strategies for salinity-prone environments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37756295</pmid><doi>10.1371/journal.pone.0291833</doi><tpages>e0291833</tpages><orcidid>https://orcid.org/0000-0003-2118-7102</orcidid><orcidid>https://orcid.org/0000-0002-0855-3828</orcidid><orcidid>https://orcid.org/0000-0002-8584-2199</orcidid><orcidid>https://orcid.org/0000-0003-1591-0755</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-09, Vol.18 (9), p.e0291833 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2869566690 |
source | Open Access: PubMed Central; PLoS; MEDLINE; Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Abiotic stress Accuracy Analysis Biology and Life Sciences Climate change Ecology and Environmental Sciences Environment models Evaluation Genetic aspects Genetics Genomes Genomics Genotype Genotypes Growth Influence Life Sciences Missing data Modelling Oryza - genetics Oryza sativa japonica People and Places Performance prediction Physical Sciences Plant Breeding Plants genetics Research and Analysis Methods Rice Salinity Salinity effects Salinity tolerance Salt Salt Tolerance - genetics Soils, Salts in |
title | Genomic selection for salinity tolerance in japonica rice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20selection%20for%20salinity%20tolerance%20in%20japonica%20rice&rft.jtitle=PloS%20one&rft.au=Bartholom%C3%A9,%20J%C3%A9r%C3%B4me&rft.date=2023-09-27&rft.volume=18&rft.issue=9&rft.spage=e0291833&rft.pages=e0291833-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0291833&rft_dat=%3Cgale_plos_%3EA766801678%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869566690&rft_id=info:pmid/37756295&rft_galeid=A766801678&rft_doaj_id=oai_doaj_org_article_2cb4bba9b79e4e129ff96ad7b1f35b2d&rfr_iscdi=true |