From time-series transcriptomics to gene regulatory networks: A review on inference methods

Inference of gene regulatory networks has been an active area of research for around 20 years, leading to the development of sophisticated inference algorithms based on a variety of assumptions and approaches. With the ever increasing demand for more accurate and powerful models, the inference probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2023-08, Vol.19 (8), p.e1011254-e1011254
Hauptverfasser: Marku, Malvina, Pancaldi, Vera
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1011254
container_issue 8
container_start_page e1011254
container_title PLoS computational biology
container_volume 19
creator Marku, Malvina
Pancaldi, Vera
description Inference of gene regulatory networks has been an active area of research for around 20 years, leading to the development of sophisticated inference algorithms based on a variety of assumptions and approaches. With the ever increasing demand for more accurate and powerful models, the inference problem remains of broad scientific interest. The abstract representation of biological systems through gene regulatory networks represents a powerful method to study such systems, encoding different amounts and types of information. In this review, we summarize the different types of inference algorithms specifically based on time-series transcriptomics, giving an overview of the main applications of gene regulatory networks in computational biology. This review is intended to give an updated reference of regulatory networks inference tools to biologists and researchers new to the topic and guide them in selecting the appropriate inference method that best fits their questions, aims, and experimental data.
doi_str_mv 10.1371/journal.pcbi.1011254
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2865519803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A763760395</galeid><doaj_id>oai_doaj_org_article_32d1db62d2414bb5aa6285dde74c60df</doaj_id><sourcerecordid>A763760395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c668t-e745fb5d52fa437c051167cc833b5fd24647f7379d06c388442b3985fb2151903</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXew4_kgvaFVRutIKJD5OHCzHnmS9JPFiO1v67_GyaWkrLiiH2OPnfWc8nix7jtEcE47fbtzoB9XNt7q2c4wwLmj5IDvGlJIZJ1Q8vLU-yp6EsEEoLSv2ODsinDLMK3ScfT_3rs-j7WEWwFsIefRqCNrbbXS91Wnv8hYGyD20Y6ei81f5APHS-R_hNF-k8M7CZe6G3A4NeBg05D3EtTPhafaoUV2AZ9P_JPt2_v7r2cVs9enD8myxmmnGRJwBL2lTU0OLRpWEa0QxZlxrQUhNG1OUrOQNJ7wyiGkiRFkWNalE0hSY4gqRk-zlwXfbuSCnvgRZCEbTuUAkEcsDYZzayK23vfJX0ikr_wScb6Xy0eoOJCkMNjUrUl5c1jVVihWCGpOq1AyZJnm9m7KNdQ9Gw5A61t0xvXsy2LVs3U5ilBxphZPDm4PD-p7uYrGS-xgqhcCFQLs9-3rK5t3PEUKUvQ0auk4N4Mb9JSkiqKoKkdBX99B_t2J-oFqVbpvezKUidfoMpOd2AzQ2xRecEc4QqejfaidBYiL8iq0aQ5DLL5__g_14ly0PrPYuBA_NTSswkvsJvy5f7idcThOeZC9ut_9GdD3S5DeTxfZn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865519803</pqid></control><display><type>article</type><title>From time-series transcriptomics to gene regulatory networks: A review on inference methods</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><creator>Marku, Malvina ; Pancaldi, Vera</creator><creatorcontrib>Marku, Malvina ; Pancaldi, Vera</creatorcontrib><description>Inference of gene regulatory networks has been an active area of research for around 20 years, leading to the development of sophisticated inference algorithms based on a variety of assumptions and approaches. With the ever increasing demand for more accurate and powerful models, the inference problem remains of broad scientific interest. The abstract representation of biological systems through gene regulatory networks represents a powerful method to study such systems, encoding different amounts and types of information. In this review, we summarize the different types of inference algorithms specifically based on time-series transcriptomics, giving an overview of the main applications of gene regulatory networks in computational biology. This review is intended to give an updated reference of regulatory networks inference tools to biologists and researchers new to the topic and guide them in selecting the appropriate inference method that best fits their questions, aims, and experimental data.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011254</identifier><identifier>PMID: 37561790</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Bioinformatics ; Biology and Life Sciences ; Computational Biology - methods ; Computer and Information Sciences ; Computer Science ; Connectivity ; Datasets ; Gene expression ; Gene Expression Profiling ; Gene Regulatory Networks - genetics ; Genetic regulation ; Genomics ; Inference ; Kinases ; Life Sciences ; Medical research ; Networks ; Physical Sciences ; Proteins ; Research and Analysis Methods ; Review ; Reviews ; RNA ; Signal transduction ; System theory ; Time series ; Time-series analysis ; Transcriptome - genetics ; Transcriptomics</subject><ispartof>PLoS computational biology, 2023-08, Vol.19 (8), p.e1011254-e1011254</ispartof><rights>Copyright: © 2023 Marku, Pancaldi. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Marku, Pancaldi. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 Marku, Pancaldi 2023 Marku, Pancaldi</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c668t-e745fb5d52fa437c051167cc833b5fd24647f7379d06c388442b3985fb2151903</citedby><cites>FETCH-LOGICAL-c668t-e745fb5d52fa437c051167cc833b5fd24647f7379d06c388442b3985fb2151903</cites><orcidid>0000-0003-3552-6777 ; 0000-0002-7433-624X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414591/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414591/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37561790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04881280$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marku, Malvina</creatorcontrib><creatorcontrib>Pancaldi, Vera</creatorcontrib><title>From time-series transcriptomics to gene regulatory networks: A review on inference methods</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Inference of gene regulatory networks has been an active area of research for around 20 years, leading to the development of sophisticated inference algorithms based on a variety of assumptions and approaches. With the ever increasing demand for more accurate and powerful models, the inference problem remains of broad scientific interest. The abstract representation of biological systems through gene regulatory networks represents a powerful method to study such systems, encoding different amounts and types of information. In this review, we summarize the different types of inference algorithms specifically based on time-series transcriptomics, giving an overview of the main applications of gene regulatory networks in computational biology. This review is intended to give an updated reference of regulatory networks inference tools to biologists and researchers new to the topic and guide them in selecting the appropriate inference method that best fits their questions, aims, and experimental data.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Computational Biology - methods</subject><subject>Computer and Information Sciences</subject><subject>Computer Science</subject><subject>Connectivity</subject><subject>Datasets</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genetic regulation</subject><subject>Genomics</subject><subject>Inference</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Medical research</subject><subject>Networks</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Review</subject><subject>Reviews</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>System theory</subject><subject>Time series</subject><subject>Time-series analysis</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXew4_kgvaFVRutIKJD5OHCzHnmS9JPFiO1v67_GyaWkrLiiH2OPnfWc8nix7jtEcE47fbtzoB9XNt7q2c4wwLmj5IDvGlJIZJ1Q8vLU-yp6EsEEoLSv2ODsinDLMK3ScfT_3rs-j7WEWwFsIefRqCNrbbXS91Wnv8hYGyD20Y6ei81f5APHS-R_hNF-k8M7CZe6G3A4NeBg05D3EtTPhafaoUV2AZ9P_JPt2_v7r2cVs9enD8myxmmnGRJwBL2lTU0OLRpWEa0QxZlxrQUhNG1OUrOQNJ7wyiGkiRFkWNalE0hSY4gqRk-zlwXfbuSCnvgRZCEbTuUAkEcsDYZzayK23vfJX0ikr_wScb6Xy0eoOJCkMNjUrUl5c1jVVihWCGpOq1AyZJnm9m7KNdQ9Gw5A61t0xvXsy2LVs3U5ilBxphZPDm4PD-p7uYrGS-xgqhcCFQLs9-3rK5t3PEUKUvQ0auk4N4Mb9JSkiqKoKkdBX99B_t2J-oFqVbpvezKUidfoMpOd2AzQ2xRecEc4QqejfaidBYiL8iq0aQ5DLL5__g_14ly0PrPYuBA_NTSswkvsJvy5f7idcThOeZC9ut_9GdD3S5DeTxfZn</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Marku, Malvina</creator><creator>Pancaldi, Vera</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3552-6777</orcidid><orcidid>https://orcid.org/0000-0002-7433-624X</orcidid></search><sort><creationdate>20230801</creationdate><title>From time-series transcriptomics to gene regulatory networks: A review on inference methods</title><author>Marku, Malvina ; Pancaldi, Vera</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c668t-e745fb5d52fa437c051167cc833b5fd24647f7379d06c388442b3985fb2151903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Computational Biology - methods</topic><topic>Computer and Information Sciences</topic><topic>Computer Science</topic><topic>Connectivity</topic><topic>Datasets</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genetic regulation</topic><topic>Genomics</topic><topic>Inference</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Medical research</topic><topic>Networks</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Review</topic><topic>Reviews</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>System theory</topic><topic>Time series</topic><topic>Time-series analysis</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marku, Malvina</creatorcontrib><creatorcontrib>Pancaldi, Vera</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marku, Malvina</au><au>Pancaldi, Vera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From time-series transcriptomics to gene regulatory networks: A review on inference methods</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>8</issue><spage>e1011254</spage><epage>e1011254</epage><pages>e1011254-e1011254</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Inference of gene regulatory networks has been an active area of research for around 20 years, leading to the development of sophisticated inference algorithms based on a variety of assumptions and approaches. With the ever increasing demand for more accurate and powerful models, the inference problem remains of broad scientific interest. The abstract representation of biological systems through gene regulatory networks represents a powerful method to study such systems, encoding different amounts and types of information. In this review, we summarize the different types of inference algorithms specifically based on time-series transcriptomics, giving an overview of the main applications of gene regulatory networks in computational biology. This review is intended to give an updated reference of regulatory networks inference tools to biologists and researchers new to the topic and guide them in selecting the appropriate inference method that best fits their questions, aims, and experimental data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37561790</pmid><doi>10.1371/journal.pcbi.1011254</doi><tpages>e1011254</tpages><orcidid>https://orcid.org/0000-0003-3552-6777</orcidid><orcidid>https://orcid.org/0000-0002-7433-624X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2023-08, Vol.19 (8), p.e1011254-e1011254
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2865519803
source MEDLINE; PMC (PubMed Central); DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS)
subjects Algorithms
Bioinformatics
Biology and Life Sciences
Computational Biology - methods
Computer and Information Sciences
Computer Science
Connectivity
Datasets
Gene expression
Gene Expression Profiling
Gene Regulatory Networks - genetics
Genetic regulation
Genomics
Inference
Kinases
Life Sciences
Medical research
Networks
Physical Sciences
Proteins
Research and Analysis Methods
Review
Reviews
RNA
Signal transduction
System theory
Time series
Time-series analysis
Transcriptome - genetics
Transcriptomics
title From time-series transcriptomics to gene regulatory networks: A review on inference methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20time-series%20transcriptomics%20to%20gene%20regulatory%20networks:%20A%20review%20on%20inference%20methods&rft.jtitle=PLoS%20computational%20biology&rft.au=Marku,%20Malvina&rft.date=2023-08-01&rft.volume=19&rft.issue=8&rft.spage=e1011254&rft.epage=e1011254&rft.pages=e1011254-e1011254&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011254&rft_dat=%3Cgale_plos_%3EA763760395%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865519803&rft_id=info:pmid/37561790&rft_galeid=A763760395&rft_doaj_id=oai_doaj_org_article_32d1db62d2414bb5aa6285dde74c60df&rfr_iscdi=true