Call detail record aggregation methodology impacts infectious disease models informed by human mobility

This paper demonstrates how two different methods used to calculate population-level mobility from Call Detail Records (CDR) produce varying predictions of the spread of epidemics informed by these data. Our findings are based on one CDR dataset describing inter-district movement in Ghana in 2021, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2023-08, Vol.19 (8), p.e1011368-e1011368
Hauptverfasser: Gibbs, Hamish, Musah, Anwar, Seidu, Omar, Ampofo, William, Asiedu-Bekoe, Franklin, Gray, Jonathan, Adewole, Wole A, Cheshire, James, Marks, Michael, Eggo, Rosalind M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1011368
container_issue 8
container_start_page e1011368
container_title PLoS computational biology
container_volume 19
creator Gibbs, Hamish
Musah, Anwar
Seidu, Omar
Ampofo, William
Asiedu-Bekoe, Franklin
Gray, Jonathan
Adewole, Wole A
Cheshire, James
Marks, Michael
Eggo, Rosalind M
description This paper demonstrates how two different methods used to calculate population-level mobility from Call Detail Records (CDR) produce varying predictions of the spread of epidemics informed by these data. Our findings are based on one CDR dataset describing inter-district movement in Ghana in 2021, produced using two different aggregation methodologies. One methodology, "all pairs," is designed to retain long distance network connections while the other, "sequential" methodology is designed to accurately reflect the volume of travel between locations. We show how the choice of methodology feeds through models of human mobility to the predictions of a metapopulation SEIR model of disease transmission. We also show that this impact varies depending on the location of pathogen introduction and the transmissibility of infections. For central locations or highly transmissible diseases, we do not observe significant differences between aggregation methodologies on the predicted spread of disease. For less transmissible diseases or those introduced into remote locations, we find that the choice of aggregation methodology influences the speed of spatial spread as well as the size of the peak number of infections in individual districts. Our findings can help researchers and users of epidemiological models to understand how methodological choices at the level of model inputs may influence the results of models of infectious disease transmission, as well as the circumstances in which these choices do not alter model predictions.
doi_str_mv 10.1371/journal.pcbi.1011368
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2865519786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A763760391</galeid><doaj_id>oai_doaj_org_article_a40ff86aa29943ab9e11aa6115d95e93</doaj_id><sourcerecordid>A763760391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-306f445e087941b8546b6c5930c1fa62637ef64fdf7c1e01f211a02f871931a23</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXez4I8mpqlZ8rFSBxMfZmjjjrFdOvNhZxP57nG5adVEvyAdbnmfe8byeLHtJyZKykr7f-n0YwC13urFLSihlsnqUnVMh2KJkonp873yWPYtxS0g61vJpdsZKIWlFi_OsW4FzeYsjWJcH1D60OXRdwA5G64e8x3HjW-98d8htvwM9xtwOBnWK7mPe2ogQMe99i-4m4kOPbd4c8s2-h5TvG-vseHiePTHgIr6Y94vs58cPP1afF9dfP61XV9cLLSkdF4xIw7lAUpU1p00luGykFjUjmhqQhWQlGslNa0pNkVBTUAqkMFVJa0ahYBfZ66PuzvmoZo-iKiopBK3LSiZifSRaD1u1C7aHcFAerLq58KFTEEarHSrgxJhKAhR1zRk0NaZqkB4q2lpgzZLW5Vxt36S2NQ5jAHciehoZ7EZ1_reihHNW8Unh7awQ_K89xlH1Nmp0DgZMBqeHC8IoZ-WEvvkHfbi9meogdTB9SCqsJ1F1VSb7JGE1TdTyASqtFnur_YDGpvuThHcnCYkZ8c_YwT5Gtf7-7T_YL6csP7I6-BgDmjvzKFHTnN82qaY5V_Ocp7RX942_S7odbPYXc2n4yA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865519786</pqid></control><display><type>article</type><title>Call detail record aggregation methodology impacts infectious disease models informed by human mobility</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gibbs, Hamish ; Musah, Anwar ; Seidu, Omar ; Ampofo, William ; Asiedu-Bekoe, Franklin ; Gray, Jonathan ; Adewole, Wole A ; Cheshire, James ; Marks, Michael ; Eggo, Rosalind M</creator><contributor>Moreno, Yamir</contributor><creatorcontrib>Gibbs, Hamish ; Musah, Anwar ; Seidu, Omar ; Ampofo, William ; Asiedu-Bekoe, Franklin ; Gray, Jonathan ; Adewole, Wole A ; Cheshire, James ; Marks, Michael ; Eggo, Rosalind M ; Moreno, Yamir</creatorcontrib><description>This paper demonstrates how two different methods used to calculate population-level mobility from Call Detail Records (CDR) produce varying predictions of the spread of epidemics informed by these data. Our findings are based on one CDR dataset describing inter-district movement in Ghana in 2021, produced using two different aggregation methodologies. One methodology, "all pairs," is designed to retain long distance network connections while the other, "sequential" methodology is designed to accurately reflect the volume of travel between locations. We show how the choice of methodology feeds through models of human mobility to the predictions of a metapopulation SEIR model of disease transmission. We also show that this impact varies depending on the location of pathogen introduction and the transmissibility of infections. For central locations or highly transmissible diseases, we do not observe significant differences between aggregation methodologies on the predicted spread of disease. For less transmissible diseases or those introduced into remote locations, we find that the choice of aggregation methodology influences the speed of spatial spread as well as the size of the peak number of infections in individual districts. Our findings can help researchers and users of epidemiological models to understand how methodological choices at the level of model inputs may influence the results of models of infectious disease transmission, as well as the circumstances in which these choices do not alter model predictions.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011368</identifier><identifier>PMID: 37561812</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Communicable diseases ; Computer and Information Sciences ; COVID-19 ; Dengue fever ; Disease control ; Disease transmission ; Earth Sciences ; Engineering and Technology ; Epidemic models ; Epidemics ; Epidemiology ; Estimates ; Ghana ; Infectious diseases ; Medical research ; Medicine and Health Sciences ; Medicine, Experimental ; Metapopulations ; Methodology ; Methods ; Mobility ; People and Places ; Predictions ; Social Sciences ; Telecommunications towers ; Tropical diseases</subject><ispartof>PLoS computational biology, 2023-08, Vol.19 (8), p.e1011368-e1011368</ispartof><rights>Copyright: © 2023 Gibbs et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Gibbs et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Gibbs et al 2023 Gibbs et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c611t-306f445e087941b8546b6c5930c1fa62637ef64fdf7c1e01f211a02f871931a23</cites><orcidid>0000-0003-4413-453X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443843/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443843/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37561812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Moreno, Yamir</contributor><creatorcontrib>Gibbs, Hamish</creatorcontrib><creatorcontrib>Musah, Anwar</creatorcontrib><creatorcontrib>Seidu, Omar</creatorcontrib><creatorcontrib>Ampofo, William</creatorcontrib><creatorcontrib>Asiedu-Bekoe, Franklin</creatorcontrib><creatorcontrib>Gray, Jonathan</creatorcontrib><creatorcontrib>Adewole, Wole A</creatorcontrib><creatorcontrib>Cheshire, James</creatorcontrib><creatorcontrib>Marks, Michael</creatorcontrib><creatorcontrib>Eggo, Rosalind M</creatorcontrib><title>Call detail record aggregation methodology impacts infectious disease models informed by human mobility</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>This paper demonstrates how two different methods used to calculate population-level mobility from Call Detail Records (CDR) produce varying predictions of the spread of epidemics informed by these data. Our findings are based on one CDR dataset describing inter-district movement in Ghana in 2021, produced using two different aggregation methodologies. One methodology, "all pairs," is designed to retain long distance network connections while the other, "sequential" methodology is designed to accurately reflect the volume of travel between locations. We show how the choice of methodology feeds through models of human mobility to the predictions of a metapopulation SEIR model of disease transmission. We also show that this impact varies depending on the location of pathogen introduction and the transmissibility of infections. For central locations or highly transmissible diseases, we do not observe significant differences between aggregation methodologies on the predicted spread of disease. For less transmissible diseases or those introduced into remote locations, we find that the choice of aggregation methodology influences the speed of spatial spread as well as the size of the peak number of infections in individual districts. Our findings can help researchers and users of epidemiological models to understand how methodological choices at the level of model inputs may influence the results of models of infectious disease transmission, as well as the circumstances in which these choices do not alter model predictions.</description><subject>Analysis</subject><subject>Communicable diseases</subject><subject>Computer and Information Sciences</subject><subject>COVID-19</subject><subject>Dengue fever</subject><subject>Disease control</subject><subject>Disease transmission</subject><subject>Earth Sciences</subject><subject>Engineering and Technology</subject><subject>Epidemic models</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Ghana</subject><subject>Infectious diseases</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Experimental</subject><subject>Metapopulations</subject><subject>Methodology</subject><subject>Methods</subject><subject>Mobility</subject><subject>People and Places</subject><subject>Predictions</subject><subject>Social Sciences</subject><subject>Telecommunications towers</subject><subject>Tropical diseases</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXez4I8mpqlZ8rFSBxMfZmjjjrFdOvNhZxP57nG5adVEvyAdbnmfe8byeLHtJyZKykr7f-n0YwC13urFLSihlsnqUnVMh2KJkonp873yWPYtxS0g61vJpdsZKIWlFi_OsW4FzeYsjWJcH1D60OXRdwA5G64e8x3HjW-98d8htvwM9xtwOBnWK7mPe2ogQMe99i-4m4kOPbd4c8s2-h5TvG-vseHiePTHgIr6Y94vs58cPP1afF9dfP61XV9cLLSkdF4xIw7lAUpU1p00luGykFjUjmhqQhWQlGslNa0pNkVBTUAqkMFVJa0ahYBfZ66PuzvmoZo-iKiopBK3LSiZifSRaD1u1C7aHcFAerLq58KFTEEarHSrgxJhKAhR1zRk0NaZqkB4q2lpgzZLW5Vxt36S2NQ5jAHciehoZ7EZ1_reihHNW8Unh7awQ_K89xlH1Nmp0DgZMBqeHC8IoZ-WEvvkHfbi9meogdTB9SCqsJ1F1VSb7JGE1TdTyASqtFnur_YDGpvuThHcnCYkZ8c_YwT5Gtf7-7T_YL6csP7I6-BgDmjvzKFHTnN82qaY5V_Ocp7RX942_S7odbPYXc2n4yA</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Gibbs, Hamish</creator><creator>Musah, Anwar</creator><creator>Seidu, Omar</creator><creator>Ampofo, William</creator><creator>Asiedu-Bekoe, Franklin</creator><creator>Gray, Jonathan</creator><creator>Adewole, Wole A</creator><creator>Cheshire, James</creator><creator>Marks, Michael</creator><creator>Eggo, Rosalind M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4413-453X</orcidid></search><sort><creationdate>20230810</creationdate><title>Call detail record aggregation methodology impacts infectious disease models informed by human mobility</title><author>Gibbs, Hamish ; Musah, Anwar ; Seidu, Omar ; Ampofo, William ; Asiedu-Bekoe, Franklin ; Gray, Jonathan ; Adewole, Wole A ; Cheshire, James ; Marks, Michael ; Eggo, Rosalind M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-306f445e087941b8546b6c5930c1fa62637ef64fdf7c1e01f211a02f871931a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Communicable diseases</topic><topic>Computer and Information Sciences</topic><topic>COVID-19</topic><topic>Dengue fever</topic><topic>Disease control</topic><topic>Disease transmission</topic><topic>Earth Sciences</topic><topic>Engineering and Technology</topic><topic>Epidemic models</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Ghana</topic><topic>Infectious diseases</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Experimental</topic><topic>Metapopulations</topic><topic>Methodology</topic><topic>Methods</topic><topic>Mobility</topic><topic>People and Places</topic><topic>Predictions</topic><topic>Social Sciences</topic><topic>Telecommunications towers</topic><topic>Tropical diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibbs, Hamish</creatorcontrib><creatorcontrib>Musah, Anwar</creatorcontrib><creatorcontrib>Seidu, Omar</creatorcontrib><creatorcontrib>Ampofo, William</creatorcontrib><creatorcontrib>Asiedu-Bekoe, Franklin</creatorcontrib><creatorcontrib>Gray, Jonathan</creatorcontrib><creatorcontrib>Adewole, Wole A</creatorcontrib><creatorcontrib>Cheshire, James</creatorcontrib><creatorcontrib>Marks, Michael</creatorcontrib><creatorcontrib>Eggo, Rosalind M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibbs, Hamish</au><au>Musah, Anwar</au><au>Seidu, Omar</au><au>Ampofo, William</au><au>Asiedu-Bekoe, Franklin</au><au>Gray, Jonathan</au><au>Adewole, Wole A</au><au>Cheshire, James</au><au>Marks, Michael</au><au>Eggo, Rosalind M</au><au>Moreno, Yamir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Call detail record aggregation methodology impacts infectious disease models informed by human mobility</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-08-10</date><risdate>2023</risdate><volume>19</volume><issue>8</issue><spage>e1011368</spage><epage>e1011368</epage><pages>e1011368-e1011368</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>This paper demonstrates how two different methods used to calculate population-level mobility from Call Detail Records (CDR) produce varying predictions of the spread of epidemics informed by these data. Our findings are based on one CDR dataset describing inter-district movement in Ghana in 2021, produced using two different aggregation methodologies. One methodology, "all pairs," is designed to retain long distance network connections while the other, "sequential" methodology is designed to accurately reflect the volume of travel between locations. We show how the choice of methodology feeds through models of human mobility to the predictions of a metapopulation SEIR model of disease transmission. We also show that this impact varies depending on the location of pathogen introduction and the transmissibility of infections. For central locations or highly transmissible diseases, we do not observe significant differences between aggregation methodologies on the predicted spread of disease. For less transmissible diseases or those introduced into remote locations, we find that the choice of aggregation methodology influences the speed of spatial spread as well as the size of the peak number of infections in individual districts. Our findings can help researchers and users of epidemiological models to understand how methodological choices at the level of model inputs may influence the results of models of infectious disease transmission, as well as the circumstances in which these choices do not alter model predictions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37561812</pmid><doi>10.1371/journal.pcbi.1011368</doi><tpages>e1011368</tpages><orcidid>https://orcid.org/0000-0003-4413-453X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2023-08, Vol.19 (8), p.e1011368-e1011368
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2865519786
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Communicable diseases
Computer and Information Sciences
COVID-19
Dengue fever
Disease control
Disease transmission
Earth Sciences
Engineering and Technology
Epidemic models
Epidemics
Epidemiology
Estimates
Ghana
Infectious diseases
Medical research
Medicine and Health Sciences
Medicine, Experimental
Metapopulations
Methodology
Methods
Mobility
People and Places
Predictions
Social Sciences
Telecommunications towers
Tropical diseases
title Call detail record aggregation methodology impacts infectious disease models informed by human mobility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Call%20detail%20record%20aggregation%20methodology%20impacts%20infectious%20disease%20models%20informed%20by%20human%20mobility&rft.jtitle=PLoS%20computational%20biology&rft.au=Gibbs,%20Hamish&rft.date=2023-08-10&rft.volume=19&rft.issue=8&rft.spage=e1011368&rft.epage=e1011368&rft.pages=e1011368-e1011368&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011368&rft_dat=%3Cgale_plos_%3EA763760391%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865519786&rft_id=info:pmid/37561812&rft_galeid=A763760391&rft_doaj_id=oai_doaj_org_article_a40ff86aa29943ab9e11aa6115d95e93&rfr_iscdi=true