serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes
serosim is an open-source R package designed to aid inference from serological studies, by simulating data arising from user-specified vaccine and antibody kinetics processes using a random effects model. Serological data are used to assess population immunity by directly measuring individuals'...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2023-08, Vol.19 (8), p.e1011384 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e1011384 |
container_title | PLoS computational biology |
container_volume | 19 |
creator | Menezes, Arthur Takahashi, Saki Routledge, Isobel Metcalf, C Jessica E Graham, Andrea L Hay, James A |
description | serosim is an open-source R package designed to aid inference from serological studies, by simulating data arising from user-specified vaccine and antibody kinetics processes using a random effects model. Serological data are used to assess population immunity by directly measuring individuals' antibody titers. They uncover locations and/or populations which are susceptible and provide evidence of past infection or vaccination to help inform public health measures and surveillance. Both serological data and new analytical techniques used to interpret them are increasingly widespread. This creates a need for tools to simulate serological studies and the processes underlying observed titer values, as this will enable researchers to identify best practices for serological study design, and provide a standardized framework to evaluate the performance of different inference methods. serosim allows users to specify and adjust model inputs representing underlying processes responsible for generating the observed titer values like time-varying patterns of infection and vaccination, population demography, immunity and antibody kinetics, and serological sampling design in order to best represent the population and disease system(s) of interest. This package will be useful for planning sampling design of future serological studies, understanding determinants of observed serological data, and validating the accuracy and power of new statistical methods. |
doi_str_mv | 10.1371/journal.pcbi.1011384 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2865519710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A763760508</galeid><doaj_id>oai_doaj_org_article_a2fd5ea4046f4b008aff6c581a57746b</doaj_id><sourcerecordid>A763760508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-602fdf2c13b175e46d3676bccd457f1fdea760601a0786a0c3db0302d30e80773</originalsourceid><addsrcrecordid>eNqVkltrFDEUxwdRbK1-A9GALwrummwmyawvshQvC0Wh6nM4k8uYdiYZk5lin_zqZtzp0pW-SAgJJ7_zP5econhK8JJQQd5chDF6aJe9qt2SYEJoVd4rjgljdCEoq-7fuh8Vj1K6wDhf1_xhcUQFE9W6YsfF72RiSK57izYenaMe1CU0BtkQUbaOLQzON2iC2tA4BS3SMACC6NL0YGPo0BUo5Xwmg3-NTO-06dweB6_zHlwd9DW6dN4MTiXUx6BMSiY9Lh5YaJN5Mp8nxfcP77-dflqcffm4Pd2cLRQnZFhwvLLarhShNRHMlFxTLnitlC6ZsMRqA4JjjglgUXHAiuoaU7zSFJsKC0FPiuc73b4NSc69S3JVccbIWhCcie2O0AEuZB9dB_FaBnDyryHERkLMybdGQk6GGShxyW1ZY1yBtVyxigATouR11no3Rxvrzmhl_BChPRA9fPHuh2zClSS4LNf5J7PCy1khhp-jSYPsXFKmbcGbME6JM0JKUopVRl_8g95d3kw1kCtw3oYcWE2iciM4zd1jeAq7vIPKa_pTFbyxLtsPHF4dOGRmML-GBsaU5Pbr-X-wnw_ZcseqPJ4pGrtvHsFymv-bIuU0_3Ke_-z27Hbj9043A0__ALC0Ak8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865519710</pqid></control><display><type>article</type><title>serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Menezes, Arthur ; Takahashi, Saki ; Routledge, Isobel ; Metcalf, C Jessica E ; Graham, Andrea L ; Hay, James A</creator><contributor>Khoury, David S.</contributor><creatorcontrib>Menezes, Arthur ; Takahashi, Saki ; Routledge, Isobel ; Metcalf, C Jessica E ; Graham, Andrea L ; Hay, James A ; Khoury, David S.</creatorcontrib><description>serosim is an open-source R package designed to aid inference from serological studies, by simulating data arising from user-specified vaccine and antibody kinetics processes using a random effects model. Serological data are used to assess population immunity by directly measuring individuals' antibody titers. They uncover locations and/or populations which are susceptible and provide evidence of past infection or vaccination to help inform public health measures and surveillance. Both serological data and new analytical techniques used to interpret them are increasingly widespread. This creates a need for tools to simulate serological studies and the processes underlying observed titer values, as this will enable researchers to identify best practices for serological study design, and provide a standardized framework to evaluate the performance of different inference methods. serosim allows users to specify and adjust model inputs representing underlying processes responsible for generating the observed titer values like time-varying patterns of infection and vaccination, population demography, immunity and antibody kinetics, and serological sampling design in order to best represent the population and disease system(s) of interest. This package will be useful for planning sampling design of future serological studies, understanding determinants of observed serological data, and validating the accuracy and power of new statistical methods.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011384</identifier><identifier>PMID: 37578985</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibodies ; Antibodies, Viral ; Best practice ; Biology and Life Sciences ; Biomarkers ; Case studies ; Demography ; Design standards ; Disease Susceptibility ; Epidemics ; Epidemiology ; Graph representations ; Health aspects ; Herd immunity ; Humans ; Immunity ; Immunology ; Infection ; Infections ; Inference ; Kinetics ; Medicine and Health Sciences ; Methods ; Pathogens ; Physical Sciences ; Public Health ; Research and Analysis Methods ; Sampling ; Sampling designs ; Serodiagnosis ; Serology ; Simulation ; Statistical methods ; Vaccination ; Vaccines</subject><ispartof>PLoS computational biology, 2023-08, Vol.19 (8), p.e1011384</ispartof><rights>Copyright: © 2023 Menezes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Menezes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Menezes et al 2023 Menezes et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c611t-602fdf2c13b175e46d3676bccd457f1fdea760601a0786a0c3db0302d30e80773</cites><orcidid>0000-0002-6580-2755 ; 0000-0002-1998-1844 ; 0000-0002-0195-4071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449138/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449138/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37578985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Khoury, David S.</contributor><creatorcontrib>Menezes, Arthur</creatorcontrib><creatorcontrib>Takahashi, Saki</creatorcontrib><creatorcontrib>Routledge, Isobel</creatorcontrib><creatorcontrib>Metcalf, C Jessica E</creatorcontrib><creatorcontrib>Graham, Andrea L</creatorcontrib><creatorcontrib>Hay, James A</creatorcontrib><title>serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>serosim is an open-source R package designed to aid inference from serological studies, by simulating data arising from user-specified vaccine and antibody kinetics processes using a random effects model. Serological data are used to assess population immunity by directly measuring individuals' antibody titers. They uncover locations and/or populations which are susceptible and provide evidence of past infection or vaccination to help inform public health measures and surveillance. Both serological data and new analytical techniques used to interpret them are increasingly widespread. This creates a need for tools to simulate serological studies and the processes underlying observed titer values, as this will enable researchers to identify best practices for serological study design, and provide a standardized framework to evaluate the performance of different inference methods. serosim allows users to specify and adjust model inputs representing underlying processes responsible for generating the observed titer values like time-varying patterns of infection and vaccination, population demography, immunity and antibody kinetics, and serological sampling design in order to best represent the population and disease system(s) of interest. This package will be useful for planning sampling design of future serological studies, understanding determinants of observed serological data, and validating the accuracy and power of new statistical methods.</description><subject>Antibodies</subject><subject>Antibodies, Viral</subject><subject>Best practice</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Case studies</subject><subject>Demography</subject><subject>Design standards</subject><subject>Disease Susceptibility</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Graph representations</subject><subject>Health aspects</subject><subject>Herd immunity</subject><subject>Humans</subject><subject>Immunity</subject><subject>Immunology</subject><subject>Infection</subject><subject>Infections</subject><subject>Inference</subject><subject>Kinetics</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Pathogens</subject><subject>Physical Sciences</subject><subject>Public Health</subject><subject>Research and Analysis Methods</subject><subject>Sampling</subject><subject>Sampling designs</subject><subject>Serodiagnosis</subject><subject>Serology</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Vaccination</subject><subject>Vaccines</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkltrFDEUxwdRbK1-A9GALwrummwmyawvshQvC0Wh6nM4k8uYdiYZk5lin_zqZtzp0pW-SAgJJ7_zP5econhK8JJQQd5chDF6aJe9qt2SYEJoVd4rjgljdCEoq-7fuh8Vj1K6wDhf1_xhcUQFE9W6YsfF72RiSK57izYenaMe1CU0BtkQUbaOLQzON2iC2tA4BS3SMACC6NL0YGPo0BUo5Xwmg3-NTO-06dweB6_zHlwd9DW6dN4MTiXUx6BMSiY9Lh5YaJN5Mp8nxfcP77-dflqcffm4Pd2cLRQnZFhwvLLarhShNRHMlFxTLnitlC6ZsMRqA4JjjglgUXHAiuoaU7zSFJsKC0FPiuc73b4NSc69S3JVccbIWhCcie2O0AEuZB9dB_FaBnDyryHERkLMybdGQk6GGShxyW1ZY1yBtVyxigATouR11no3Rxvrzmhl_BChPRA9fPHuh2zClSS4LNf5J7PCy1khhp-jSYPsXFKmbcGbME6JM0JKUopVRl_8g95d3kw1kCtw3oYcWE2iciM4zd1jeAq7vIPKa_pTFbyxLtsPHF4dOGRmML-GBsaU5Pbr-X-wnw_ZcseqPJ4pGrtvHsFymv-bIuU0_3Ke_-z27Hbj9043A0__ALC0Ak8</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Menezes, Arthur</creator><creator>Takahashi, Saki</creator><creator>Routledge, Isobel</creator><creator>Metcalf, C Jessica E</creator><creator>Graham, Andrea L</creator><creator>Hay, James A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6580-2755</orcidid><orcidid>https://orcid.org/0000-0002-1998-1844</orcidid><orcidid>https://orcid.org/0000-0002-0195-4071</orcidid></search><sort><creationdate>20230801</creationdate><title>serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes</title><author>Menezes, Arthur ; Takahashi, Saki ; Routledge, Isobel ; Metcalf, C Jessica E ; Graham, Andrea L ; Hay, James A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-602fdf2c13b175e46d3676bccd457f1fdea760601a0786a0c3db0302d30e80773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibodies</topic><topic>Antibodies, Viral</topic><topic>Best practice</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Case studies</topic><topic>Demography</topic><topic>Design standards</topic><topic>Disease Susceptibility</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Graph representations</topic><topic>Health aspects</topic><topic>Herd immunity</topic><topic>Humans</topic><topic>Immunity</topic><topic>Immunology</topic><topic>Infection</topic><topic>Infections</topic><topic>Inference</topic><topic>Kinetics</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Pathogens</topic><topic>Physical Sciences</topic><topic>Public Health</topic><topic>Research and Analysis Methods</topic><topic>Sampling</topic><topic>Sampling designs</topic><topic>Serodiagnosis</topic><topic>Serology</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Vaccination</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menezes, Arthur</creatorcontrib><creatorcontrib>Takahashi, Saki</creatorcontrib><creatorcontrib>Routledge, Isobel</creatorcontrib><creatorcontrib>Metcalf, C Jessica E</creatorcontrib><creatorcontrib>Graham, Andrea L</creatorcontrib><creatorcontrib>Hay, James A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menezes, Arthur</au><au>Takahashi, Saki</au><au>Routledge, Isobel</au><au>Metcalf, C Jessica E</au><au>Graham, Andrea L</au><au>Hay, James A</au><au>Khoury, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>8</issue><spage>e1011384</spage><pages>e1011384-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>serosim is an open-source R package designed to aid inference from serological studies, by simulating data arising from user-specified vaccine and antibody kinetics processes using a random effects model. Serological data are used to assess population immunity by directly measuring individuals' antibody titers. They uncover locations and/or populations which are susceptible and provide evidence of past infection or vaccination to help inform public health measures and surveillance. Both serological data and new analytical techniques used to interpret them are increasingly widespread. This creates a need for tools to simulate serological studies and the processes underlying observed titer values, as this will enable researchers to identify best practices for serological study design, and provide a standardized framework to evaluate the performance of different inference methods. serosim allows users to specify and adjust model inputs representing underlying processes responsible for generating the observed titer values like time-varying patterns of infection and vaccination, population demography, immunity and antibody kinetics, and serological sampling design in order to best represent the population and disease system(s) of interest. This package will be useful for planning sampling design of future serological studies, understanding determinants of observed serological data, and validating the accuracy and power of new statistical methods.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37578985</pmid><doi>10.1371/journal.pcbi.1011384</doi><tpages>e1011384</tpages><orcidid>https://orcid.org/0000-0002-6580-2755</orcidid><orcidid>https://orcid.org/0000-0002-1998-1844</orcidid><orcidid>https://orcid.org/0000-0002-0195-4071</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2023-08, Vol.19 (8), p.e1011384 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2865519710 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Antibodies Antibodies, Viral Best practice Biology and Life Sciences Biomarkers Case studies Demography Design standards Disease Susceptibility Epidemics Epidemiology Graph representations Health aspects Herd immunity Humans Immunity Immunology Infection Infections Inference Kinetics Medicine and Health Sciences Methods Pathogens Physical Sciences Public Health Research and Analysis Methods Sampling Sampling designs Serodiagnosis Serology Simulation Statistical methods Vaccination Vaccines |
title | serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=serosim:%20An%20R%20package%20for%20simulating%20serological%20data%20arising%20from%20vaccination,%20epidemiological%20and%20antibody%20kinetics%20processes&rft.jtitle=PLoS%20computational%20biology&rft.au=Menezes,%20Arthur&rft.date=2023-08-01&rft.volume=19&rft.issue=8&rft.spage=e1011384&rft.pages=e1011384-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011384&rft_dat=%3Cgale_plos_%3EA763760508%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865519710&rft_id=info:pmid/37578985&rft_galeid=A763760508&rft_doaj_id=oai_doaj_org_article_a2fd5ea4046f4b008aff6c581a57746b&rfr_iscdi=true |