serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes

serosim is an open-source R package designed to aid inference from serological studies, by simulating data arising from user-specified vaccine and antibody kinetics processes using a random effects model. Serological data are used to assess population immunity by directly measuring individuals'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2023-08, Vol.19 (8), p.e1011384
Hauptverfasser: Menezes, Arthur, Takahashi, Saki, Routledge, Isobel, Metcalf, C Jessica E, Graham, Andrea L, Hay, James A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e1011384
container_title PLoS computational biology
container_volume 19
creator Menezes, Arthur
Takahashi, Saki
Routledge, Isobel
Metcalf, C Jessica E
Graham, Andrea L
Hay, James A
description serosim is an open-source R package designed to aid inference from serological studies, by simulating data arising from user-specified vaccine and antibody kinetics processes using a random effects model. Serological data are used to assess population immunity by directly measuring individuals' antibody titers. They uncover locations and/or populations which are susceptible and provide evidence of past infection or vaccination to help inform public health measures and surveillance. Both serological data and new analytical techniques used to interpret them are increasingly widespread. This creates a need for tools to simulate serological studies and the processes underlying observed titer values, as this will enable researchers to identify best practices for serological study design, and provide a standardized framework to evaluate the performance of different inference methods. serosim allows users to specify and adjust model inputs representing underlying processes responsible for generating the observed titer values like time-varying patterns of infection and vaccination, population demography, immunity and antibody kinetics, and serological sampling design in order to best represent the population and disease system(s) of interest. This package will be useful for planning sampling design of future serological studies, understanding determinants of observed serological data, and validating the accuracy and power of new statistical methods.
doi_str_mv 10.1371/journal.pcbi.1011384
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2865519710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A763760508</galeid><doaj_id>oai_doaj_org_article_a2fd5ea4046f4b008aff6c581a57746b</doaj_id><sourcerecordid>A763760508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-602fdf2c13b175e46d3676bccd457f1fdea760601a0786a0c3db0302d30e80773</originalsourceid><addsrcrecordid>eNqVkltrFDEUxwdRbK1-A9GALwrummwmyawvshQvC0Wh6nM4k8uYdiYZk5lin_zqZtzp0pW-SAgJJ7_zP5econhK8JJQQd5chDF6aJe9qt2SYEJoVd4rjgljdCEoq-7fuh8Vj1K6wDhf1_xhcUQFE9W6YsfF72RiSK57izYenaMe1CU0BtkQUbaOLQzON2iC2tA4BS3SMACC6NL0YGPo0BUo5Xwmg3-NTO-06dweB6_zHlwd9DW6dN4MTiXUx6BMSiY9Lh5YaJN5Mp8nxfcP77-dflqcffm4Pd2cLRQnZFhwvLLarhShNRHMlFxTLnitlC6ZsMRqA4JjjglgUXHAiuoaU7zSFJsKC0FPiuc73b4NSc69S3JVccbIWhCcie2O0AEuZB9dB_FaBnDyryHERkLMybdGQk6GGShxyW1ZY1yBtVyxigATouR11no3Rxvrzmhl_BChPRA9fPHuh2zClSS4LNf5J7PCy1khhp-jSYPsXFKmbcGbME6JM0JKUopVRl_8g95d3kw1kCtw3oYcWE2iciM4zd1jeAq7vIPKa_pTFbyxLtsPHF4dOGRmML-GBsaU5Pbr-X-wnw_ZcseqPJ4pGrtvHsFymv-bIuU0_3Ke_-z27Hbj9043A0__ALC0Ak8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865519710</pqid></control><display><type>article</type><title>serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Menezes, Arthur ; Takahashi, Saki ; Routledge, Isobel ; Metcalf, C Jessica E ; Graham, Andrea L ; Hay, James A</creator><contributor>Khoury, David S.</contributor><creatorcontrib>Menezes, Arthur ; Takahashi, Saki ; Routledge, Isobel ; Metcalf, C Jessica E ; Graham, Andrea L ; Hay, James A ; Khoury, David S.</creatorcontrib><description>serosim is an open-source R package designed to aid inference from serological studies, by simulating data arising from user-specified vaccine and antibody kinetics processes using a random effects model. Serological data are used to assess population immunity by directly measuring individuals' antibody titers. They uncover locations and/or populations which are susceptible and provide evidence of past infection or vaccination to help inform public health measures and surveillance. Both serological data and new analytical techniques used to interpret them are increasingly widespread. This creates a need for tools to simulate serological studies and the processes underlying observed titer values, as this will enable researchers to identify best practices for serological study design, and provide a standardized framework to evaluate the performance of different inference methods. serosim allows users to specify and adjust model inputs representing underlying processes responsible for generating the observed titer values like time-varying patterns of infection and vaccination, population demography, immunity and antibody kinetics, and serological sampling design in order to best represent the population and disease system(s) of interest. This package will be useful for planning sampling design of future serological studies, understanding determinants of observed serological data, and validating the accuracy and power of new statistical methods.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011384</identifier><identifier>PMID: 37578985</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibodies ; Antibodies, Viral ; Best practice ; Biology and Life Sciences ; Biomarkers ; Case studies ; Demography ; Design standards ; Disease Susceptibility ; Epidemics ; Epidemiology ; Graph representations ; Health aspects ; Herd immunity ; Humans ; Immunity ; Immunology ; Infection ; Infections ; Inference ; Kinetics ; Medicine and Health Sciences ; Methods ; Pathogens ; Physical Sciences ; Public Health ; Research and Analysis Methods ; Sampling ; Sampling designs ; Serodiagnosis ; Serology ; Simulation ; Statistical methods ; Vaccination ; Vaccines</subject><ispartof>PLoS computational biology, 2023-08, Vol.19 (8), p.e1011384</ispartof><rights>Copyright: © 2023 Menezes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Menezes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Menezes et al 2023 Menezes et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c611t-602fdf2c13b175e46d3676bccd457f1fdea760601a0786a0c3db0302d30e80773</cites><orcidid>0000-0002-6580-2755 ; 0000-0002-1998-1844 ; 0000-0002-0195-4071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449138/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449138/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37578985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Khoury, David S.</contributor><creatorcontrib>Menezes, Arthur</creatorcontrib><creatorcontrib>Takahashi, Saki</creatorcontrib><creatorcontrib>Routledge, Isobel</creatorcontrib><creatorcontrib>Metcalf, C Jessica E</creatorcontrib><creatorcontrib>Graham, Andrea L</creatorcontrib><creatorcontrib>Hay, James A</creatorcontrib><title>serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>serosim is an open-source R package designed to aid inference from serological studies, by simulating data arising from user-specified vaccine and antibody kinetics processes using a random effects model. Serological data are used to assess population immunity by directly measuring individuals' antibody titers. They uncover locations and/or populations which are susceptible and provide evidence of past infection or vaccination to help inform public health measures and surveillance. Both serological data and new analytical techniques used to interpret them are increasingly widespread. This creates a need for tools to simulate serological studies and the processes underlying observed titer values, as this will enable researchers to identify best practices for serological study design, and provide a standardized framework to evaluate the performance of different inference methods. serosim allows users to specify and adjust model inputs representing underlying processes responsible for generating the observed titer values like time-varying patterns of infection and vaccination, population demography, immunity and antibody kinetics, and serological sampling design in order to best represent the population and disease system(s) of interest. This package will be useful for planning sampling design of future serological studies, understanding determinants of observed serological data, and validating the accuracy and power of new statistical methods.</description><subject>Antibodies</subject><subject>Antibodies, Viral</subject><subject>Best practice</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Case studies</subject><subject>Demography</subject><subject>Design standards</subject><subject>Disease Susceptibility</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Graph representations</subject><subject>Health aspects</subject><subject>Herd immunity</subject><subject>Humans</subject><subject>Immunity</subject><subject>Immunology</subject><subject>Infection</subject><subject>Infections</subject><subject>Inference</subject><subject>Kinetics</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Pathogens</subject><subject>Physical Sciences</subject><subject>Public Health</subject><subject>Research and Analysis Methods</subject><subject>Sampling</subject><subject>Sampling designs</subject><subject>Serodiagnosis</subject><subject>Serology</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Vaccination</subject><subject>Vaccines</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkltrFDEUxwdRbK1-A9GALwrummwmyawvshQvC0Wh6nM4k8uYdiYZk5lin_zqZtzp0pW-SAgJJ7_zP5econhK8JJQQd5chDF6aJe9qt2SYEJoVd4rjgljdCEoq-7fuh8Vj1K6wDhf1_xhcUQFE9W6YsfF72RiSK57izYenaMe1CU0BtkQUbaOLQzON2iC2tA4BS3SMACC6NL0YGPo0BUo5Xwmg3-NTO-06dweB6_zHlwd9DW6dN4MTiXUx6BMSiY9Lh5YaJN5Mp8nxfcP77-dflqcffm4Pd2cLRQnZFhwvLLarhShNRHMlFxTLnitlC6ZsMRqA4JjjglgUXHAiuoaU7zSFJsKC0FPiuc73b4NSc69S3JVccbIWhCcie2O0AEuZB9dB_FaBnDyryHERkLMybdGQk6GGShxyW1ZY1yBtVyxigATouR11no3Rxvrzmhl_BChPRA9fPHuh2zClSS4LNf5J7PCy1khhp-jSYPsXFKmbcGbME6JM0JKUopVRl_8g95d3kw1kCtw3oYcWE2iciM4zd1jeAq7vIPKa_pTFbyxLtsPHF4dOGRmML-GBsaU5Pbr-X-wnw_ZcseqPJ4pGrtvHsFymv-bIuU0_3Ke_-z27Hbj9043A0__ALC0Ak8</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Menezes, Arthur</creator><creator>Takahashi, Saki</creator><creator>Routledge, Isobel</creator><creator>Metcalf, C Jessica E</creator><creator>Graham, Andrea L</creator><creator>Hay, James A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6580-2755</orcidid><orcidid>https://orcid.org/0000-0002-1998-1844</orcidid><orcidid>https://orcid.org/0000-0002-0195-4071</orcidid></search><sort><creationdate>20230801</creationdate><title>serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes</title><author>Menezes, Arthur ; Takahashi, Saki ; Routledge, Isobel ; Metcalf, C Jessica E ; Graham, Andrea L ; Hay, James A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-602fdf2c13b175e46d3676bccd457f1fdea760601a0786a0c3db0302d30e80773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibodies</topic><topic>Antibodies, Viral</topic><topic>Best practice</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Case studies</topic><topic>Demography</topic><topic>Design standards</topic><topic>Disease Susceptibility</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Graph representations</topic><topic>Health aspects</topic><topic>Herd immunity</topic><topic>Humans</topic><topic>Immunity</topic><topic>Immunology</topic><topic>Infection</topic><topic>Infections</topic><topic>Inference</topic><topic>Kinetics</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Pathogens</topic><topic>Physical Sciences</topic><topic>Public Health</topic><topic>Research and Analysis Methods</topic><topic>Sampling</topic><topic>Sampling designs</topic><topic>Serodiagnosis</topic><topic>Serology</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Vaccination</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menezes, Arthur</creatorcontrib><creatorcontrib>Takahashi, Saki</creatorcontrib><creatorcontrib>Routledge, Isobel</creatorcontrib><creatorcontrib>Metcalf, C Jessica E</creatorcontrib><creatorcontrib>Graham, Andrea L</creatorcontrib><creatorcontrib>Hay, James A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menezes, Arthur</au><au>Takahashi, Saki</au><au>Routledge, Isobel</au><au>Metcalf, C Jessica E</au><au>Graham, Andrea L</au><au>Hay, James A</au><au>Khoury, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>8</issue><spage>e1011384</spage><pages>e1011384-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>serosim is an open-source R package designed to aid inference from serological studies, by simulating data arising from user-specified vaccine and antibody kinetics processes using a random effects model. Serological data are used to assess population immunity by directly measuring individuals' antibody titers. They uncover locations and/or populations which are susceptible and provide evidence of past infection or vaccination to help inform public health measures and surveillance. Both serological data and new analytical techniques used to interpret them are increasingly widespread. This creates a need for tools to simulate serological studies and the processes underlying observed titer values, as this will enable researchers to identify best practices for serological study design, and provide a standardized framework to evaluate the performance of different inference methods. serosim allows users to specify and adjust model inputs representing underlying processes responsible for generating the observed titer values like time-varying patterns of infection and vaccination, population demography, immunity and antibody kinetics, and serological sampling design in order to best represent the population and disease system(s) of interest. This package will be useful for planning sampling design of future serological studies, understanding determinants of observed serological data, and validating the accuracy and power of new statistical methods.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37578985</pmid><doi>10.1371/journal.pcbi.1011384</doi><tpages>e1011384</tpages><orcidid>https://orcid.org/0000-0002-6580-2755</orcidid><orcidid>https://orcid.org/0000-0002-1998-1844</orcidid><orcidid>https://orcid.org/0000-0002-0195-4071</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2023-08, Vol.19 (8), p.e1011384
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2865519710
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Antibodies
Antibodies, Viral
Best practice
Biology and Life Sciences
Biomarkers
Case studies
Demography
Design standards
Disease Susceptibility
Epidemics
Epidemiology
Graph representations
Health aspects
Herd immunity
Humans
Immunity
Immunology
Infection
Infections
Inference
Kinetics
Medicine and Health Sciences
Methods
Pathogens
Physical Sciences
Public Health
Research and Analysis Methods
Sampling
Sampling designs
Serodiagnosis
Serology
Simulation
Statistical methods
Vaccination
Vaccines
title serosim: An R package for simulating serological data arising from vaccination, epidemiological and antibody kinetics processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=serosim:%20An%20R%20package%20for%20simulating%20serological%20data%20arising%20from%20vaccination,%20epidemiological%20and%20antibody%20kinetics%20processes&rft.jtitle=PLoS%20computational%20biology&rft.au=Menezes,%20Arthur&rft.date=2023-08-01&rft.volume=19&rft.issue=8&rft.spage=e1011384&rft.pages=e1011384-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011384&rft_dat=%3Cgale_plos_%3EA763760508%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865519710&rft_id=info:pmid/37578985&rft_galeid=A763760508&rft_doaj_id=oai_doaj_org_article_a2fd5ea4046f4b008aff6c581a57746b&rfr_iscdi=true