Structural bioinformatics studies of bacterial outer membrane beta-barrel transporters and their AlphaFold2 predicted water-soluble QTY variants
Beta-barrel outer membrane proteins (OMP) are integral components of Gram-negative bacteria, eukaryotic mitochondria, and chloroplasts. They play essential roles in various cellular processes including nutrient transport, membrane stability, host-pathogen interactions, antibiotic resistance and more...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-08, Vol.18 (8), p.e0290360-e0290360 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0290360 |
---|---|
container_issue | 8 |
container_start_page | e0290360 |
container_title | PloS one |
container_volume | 18 |
creator | Sajeev-Sheeja, Akash Smorodina, Eva Zhang, Shuguang |
description | Beta-barrel outer membrane proteins (OMP) are integral components of Gram-negative bacteria, eukaryotic mitochondria, and chloroplasts. They play essential roles in various cellular processes including nutrient transport, membrane stability, host-pathogen interactions, antibiotic resistance and more. The advent of AlphaFold2 for accurate protein structure predictions transformed structural bioinformatic studies. We previously used a QTY code to convert hydrophobic alpha-helices to hydrophilic alpha-helices in over 50 membrane proteins with all alpha-helices. The QTY code systematically replaces hydrophobic leucine (L), isoleucine (I), valine (V), and phenylalanine (F) with hydrophilic glutamine (Q), threonine (T), and tyrosine (Y). We here present a structural bioinformatic analysis of five outer membrane beta-barrel proteins with known molecular structures, including a) BamA, b) Omp85 (also called Sam50), c) FecA, d) Tsx, and e) OmpC. We superposed the structures of five native beta-barrel outer membrane proteins and their AlphaFold2-predicted corresponding QTY variant structures. The superposed structures of OMPs and their QTY variants exhibit remarkable structural similarity, as evidenced by residue mean square distance (RMSD) values between 0.206Å to 0.414Å despite the replacement of at least 22% (Transmembrane variation) of the amino acids in the transmembrane regions. We also show that native outer membrane proteins and QTY variants have different hydrophobicity patches. Our study provides important insights into the differences between hydrophobic and hydrophilic beta-barrels and validates the QTY code for studying beta-barrel membrane proteins and perhaps other hydrophobic aggregated proteins. Our findings demonstrate that the QTY code can be used as a simple tool for designing hydrophobic proteins in various biological contexts. |
doi_str_mv | 10.1371/journal.pone.0290360 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2854906674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A761748157</galeid><doaj_id>oai_doaj_org_article_faccd523f6df4f8ea609ed59684c2208</doaj_id><sourcerecordid>A761748157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-7565430095f1115d8383f252c5b27146d98c87d10cebcf6e49fc377dae364bab3</originalsourceid><addsrcrecordid>eNqNk99qFDEUxgdRbK2-gWBAEL3YNX9mkpkrKcVqoVC0VfAqZJKT3SyZyTbJVH0LH9lsd5Wu9EJykXDyy3eS7-RU1XOC54QJ8nYVpjgqP1-HEeaYdphx_KA6JB2jM04xe3hnfVA9SWmFccNazh9XB0xwLIjoDqtflzlOOk9RedS74EYb4qCy0wmlPBkHCQWLeqUzRFeYMJUFGmDooxoB9ZDVrFcxgke5RNI6xAIkpEaD8hJcRMd-vVSnwRuK1hGMK0oGfVeFmqXgp94D-nT1Dd2ooj_m9LR6ZJVP8Gw3H1VfTt9fnXycnV98ODs5Pp9pLnCeiYY3NcO4aywhpDEta5mlDdVNTwWpuela3QpDsIZeWw51ZzUTwihgvO5Vz46qF1vdtQ9J7sxMkrZN3WHORV2Isy1hglrJdXSDij9lUE7eBkJcSBWLUx6kVVqbhjLLja1tC4rjDkzT8bbWlOK2aL3bZZv6AYyGsbjl90T3d0a3lItwIwmu61K0jcLrnUIM1xOkLAeXNHhfyhCm24tzRiltWUFf_oPe_7wdtVDlBZvCl8R6IyqPBSeibkkjCjW_hyrDwOB0-XrWlfjegTd7BwqT4UdeqCkleXb5-f_Zi6_77Ks77BKUz8vN_8kujGkfrLegjiGlCPavywTLTef8cUNuOkfuOof9BvyUDIw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854906674</pqid></control><display><type>article</type><title>Structural bioinformatics studies of bacterial outer membrane beta-barrel transporters and their AlphaFold2 predicted water-soluble QTY variants</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sajeev-Sheeja, Akash ; Smorodina, Eva ; Zhang, Shuguang</creator><contributor>Wang, Yong</contributor><creatorcontrib>Sajeev-Sheeja, Akash ; Smorodina, Eva ; Zhang, Shuguang ; Wang, Yong</creatorcontrib><description>Beta-barrel outer membrane proteins (OMP) are integral components of Gram-negative bacteria, eukaryotic mitochondria, and chloroplasts. They play essential roles in various cellular processes including nutrient transport, membrane stability, host-pathogen interactions, antibiotic resistance and more. The advent of AlphaFold2 for accurate protein structure predictions transformed structural bioinformatic studies. We previously used a QTY code to convert hydrophobic alpha-helices to hydrophilic alpha-helices in over 50 membrane proteins with all alpha-helices. The QTY code systematically replaces hydrophobic leucine (L), isoleucine (I), valine (V), and phenylalanine (F) with hydrophilic glutamine (Q), threonine (T), and tyrosine (Y). We here present a structural bioinformatic analysis of five outer membrane beta-barrel proteins with known molecular structures, including a) BamA, b) Omp85 (also called Sam50), c) FecA, d) Tsx, and e) OmpC. We superposed the structures of five native beta-barrel outer membrane proteins and their AlphaFold2-predicted corresponding QTY variant structures. The superposed structures of OMPs and their QTY variants exhibit remarkable structural similarity, as evidenced by residue mean square distance (RMSD) values between 0.206Å to 0.414Å despite the replacement of at least 22% (Transmembrane variation) of the amino acids in the transmembrane regions. We also show that native outer membrane proteins and QTY variants have different hydrophobicity patches. Our study provides important insights into the differences between hydrophobic and hydrophilic beta-barrels and validates the QTY code for studying beta-barrel membrane proteins and perhaps other hydrophobic aggregated proteins. Our findings demonstrate that the QTY code can be used as a simple tool for designing hydrophobic proteins in various biological contexts.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0290360</identifier><identifier>PMID: 37607179</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Amino acids ; Analysis ; Antibiotic resistance ; Antibiotics ; Bacteria ; Barrels ; Bioinformatics ; Biology and Life Sciences ; Biosynthesis ; Chloroplasts ; Computational biology ; Drug resistance ; Glutamine ; Gram-negative bacteria ; Helices ; Host-pathogen interactions ; Hydrogen bonds ; Hydrophilicity ; Hydrophobicity ; Isoleucine ; Leucine ; Membrane proteins ; Membranes ; Mitochondria ; Molecular structure ; Nutrient transport ; Outer membrane proteins ; Phenylalanine ; Polyamines ; Protein structure ; Proteins ; Research and Analysis Methods ; Threonine ; Tyrosine ; Valine</subject><ispartof>PloS one, 2023-08, Vol.18 (8), p.e0290360-e0290360</ispartof><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Sajeev-Sheeja et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Sajeev-Sheeja et al 2023 Sajeev-Sheeja et al</rights><rights>2023 Sajeev-Sheeja et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-7565430095f1115d8383f252c5b27146d98c87d10cebcf6e49fc377dae364bab3</citedby><cites>FETCH-LOGICAL-c670t-7565430095f1115d8383f252c5b27146d98c87d10cebcf6e49fc377dae364bab3</cites><orcidid>0000-0002-3856-3752 ; 0000-0002-1138-2521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443868/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443868/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Wang, Yong</contributor><creatorcontrib>Sajeev-Sheeja, Akash</creatorcontrib><creatorcontrib>Smorodina, Eva</creatorcontrib><creatorcontrib>Zhang, Shuguang</creatorcontrib><title>Structural bioinformatics studies of bacterial outer membrane beta-barrel transporters and their AlphaFold2 predicted water-soluble QTY variants</title><title>PloS one</title><description>Beta-barrel outer membrane proteins (OMP) are integral components of Gram-negative bacteria, eukaryotic mitochondria, and chloroplasts. They play essential roles in various cellular processes including nutrient transport, membrane stability, host-pathogen interactions, antibiotic resistance and more. The advent of AlphaFold2 for accurate protein structure predictions transformed structural bioinformatic studies. We previously used a QTY code to convert hydrophobic alpha-helices to hydrophilic alpha-helices in over 50 membrane proteins with all alpha-helices. The QTY code systematically replaces hydrophobic leucine (L), isoleucine (I), valine (V), and phenylalanine (F) with hydrophilic glutamine (Q), threonine (T), and tyrosine (Y). We here present a structural bioinformatic analysis of five outer membrane beta-barrel proteins with known molecular structures, including a) BamA, b) Omp85 (also called Sam50), c) FecA, d) Tsx, and e) OmpC. We superposed the structures of five native beta-barrel outer membrane proteins and their AlphaFold2-predicted corresponding QTY variant structures. The superposed structures of OMPs and their QTY variants exhibit remarkable structural similarity, as evidenced by residue mean square distance (RMSD) values between 0.206Å to 0.414Å despite the replacement of at least 22% (Transmembrane variation) of the amino acids in the transmembrane regions. We also show that native outer membrane proteins and QTY variants have different hydrophobicity patches. Our study provides important insights into the differences between hydrophobic and hydrophilic beta-barrels and validates the QTY code for studying beta-barrel membrane proteins and perhaps other hydrophobic aggregated proteins. Our findings demonstrate that the QTY code can be used as a simple tool for designing hydrophobic proteins in various biological contexts.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Barrels</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Chloroplasts</subject><subject>Computational biology</subject><subject>Drug resistance</subject><subject>Glutamine</subject><subject>Gram-negative bacteria</subject><subject>Helices</subject><subject>Host-pathogen interactions</subject><subject>Hydrogen bonds</subject><subject>Hydrophilicity</subject><subject>Hydrophobicity</subject><subject>Isoleucine</subject><subject>Leucine</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Mitochondria</subject><subject>Molecular structure</subject><subject>Nutrient transport</subject><subject>Outer membrane proteins</subject><subject>Phenylalanine</subject><subject>Polyamines</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Threonine</subject><subject>Tyrosine</subject><subject>Valine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99qFDEUxgdRbK2-gWBAEL3YNX9mkpkrKcVqoVC0VfAqZJKT3SyZyTbJVH0LH9lsd5Wu9EJykXDyy3eS7-RU1XOC54QJ8nYVpjgqP1-HEeaYdphx_KA6JB2jM04xe3hnfVA9SWmFccNazh9XB0xwLIjoDqtflzlOOk9RedS74EYb4qCy0wmlPBkHCQWLeqUzRFeYMJUFGmDooxoB9ZDVrFcxgke5RNI6xAIkpEaD8hJcRMd-vVSnwRuK1hGMK0oGfVeFmqXgp94D-nT1Dd2ooj_m9LR6ZJVP8Gw3H1VfTt9fnXycnV98ODs5Pp9pLnCeiYY3NcO4aywhpDEta5mlDdVNTwWpuela3QpDsIZeWw51ZzUTwihgvO5Vz46qF1vdtQ9J7sxMkrZN3WHORV2Isy1hglrJdXSDij9lUE7eBkJcSBWLUx6kVVqbhjLLja1tC4rjDkzT8bbWlOK2aL3bZZv6AYyGsbjl90T3d0a3lItwIwmu61K0jcLrnUIM1xOkLAeXNHhfyhCm24tzRiltWUFf_oPe_7wdtVDlBZvCl8R6IyqPBSeibkkjCjW_hyrDwOB0-XrWlfjegTd7BwqT4UdeqCkleXb5-f_Zi6_77Ks77BKUz8vN_8kujGkfrLegjiGlCPavywTLTef8cUNuOkfuOof9BvyUDIw</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Sajeev-Sheeja, Akash</creator><creator>Smorodina, Eva</creator><creator>Zhang, Shuguang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3856-3752</orcidid><orcidid>https://orcid.org/0000-0002-1138-2521</orcidid></search><sort><creationdate>20230822</creationdate><title>Structural bioinformatics studies of bacterial outer membrane beta-barrel transporters and their AlphaFold2 predicted water-soluble QTY variants</title><author>Sajeev-Sheeja, Akash ; Smorodina, Eva ; Zhang, Shuguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-7565430095f1115d8383f252c5b27146d98c87d10cebcf6e49fc377dae364bab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Barrels</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Chloroplasts</topic><topic>Computational biology</topic><topic>Drug resistance</topic><topic>Glutamine</topic><topic>Gram-negative bacteria</topic><topic>Helices</topic><topic>Host-pathogen interactions</topic><topic>Hydrogen bonds</topic><topic>Hydrophilicity</topic><topic>Hydrophobicity</topic><topic>Isoleucine</topic><topic>Leucine</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Mitochondria</topic><topic>Molecular structure</topic><topic>Nutrient transport</topic><topic>Outer membrane proteins</topic><topic>Phenylalanine</topic><topic>Polyamines</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Threonine</topic><topic>Tyrosine</topic><topic>Valine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajeev-Sheeja, Akash</creatorcontrib><creatorcontrib>Smorodina, Eva</creatorcontrib><creatorcontrib>Zhang, Shuguang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajeev-Sheeja, Akash</au><au>Smorodina, Eva</au><au>Zhang, Shuguang</au><au>Wang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural bioinformatics studies of bacterial outer membrane beta-barrel transporters and their AlphaFold2 predicted water-soluble QTY variants</atitle><jtitle>PloS one</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>18</volume><issue>8</issue><spage>e0290360</spage><epage>e0290360</epage><pages>e0290360-e0290360</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Beta-barrel outer membrane proteins (OMP) are integral components of Gram-negative bacteria, eukaryotic mitochondria, and chloroplasts. They play essential roles in various cellular processes including nutrient transport, membrane stability, host-pathogen interactions, antibiotic resistance and more. The advent of AlphaFold2 for accurate protein structure predictions transformed structural bioinformatic studies. We previously used a QTY code to convert hydrophobic alpha-helices to hydrophilic alpha-helices in over 50 membrane proteins with all alpha-helices. The QTY code systematically replaces hydrophobic leucine (L), isoleucine (I), valine (V), and phenylalanine (F) with hydrophilic glutamine (Q), threonine (T), and tyrosine (Y). We here present a structural bioinformatic analysis of five outer membrane beta-barrel proteins with known molecular structures, including a) BamA, b) Omp85 (also called Sam50), c) FecA, d) Tsx, and e) OmpC. We superposed the structures of five native beta-barrel outer membrane proteins and their AlphaFold2-predicted corresponding QTY variant structures. The superposed structures of OMPs and their QTY variants exhibit remarkable structural similarity, as evidenced by residue mean square distance (RMSD) values between 0.206Å to 0.414Å despite the replacement of at least 22% (Transmembrane variation) of the amino acids in the transmembrane regions. We also show that native outer membrane proteins and QTY variants have different hydrophobicity patches. Our study provides important insights into the differences between hydrophobic and hydrophilic beta-barrels and validates the QTY code for studying beta-barrel membrane proteins and perhaps other hydrophobic aggregated proteins. Our findings demonstrate that the QTY code can be used as a simple tool for designing hydrophobic proteins in various biological contexts.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>37607179</pmid><doi>10.1371/journal.pone.0290360</doi><tpages>e0290360</tpages><orcidid>https://orcid.org/0000-0002-3856-3752</orcidid><orcidid>https://orcid.org/0000-0002-1138-2521</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-08, Vol.18 (8), p.e0290360-e0290360 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2854906674 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino acids Analysis Antibiotic resistance Antibiotics Bacteria Barrels Bioinformatics Biology and Life Sciences Biosynthesis Chloroplasts Computational biology Drug resistance Glutamine Gram-negative bacteria Helices Host-pathogen interactions Hydrogen bonds Hydrophilicity Hydrophobicity Isoleucine Leucine Membrane proteins Membranes Mitochondria Molecular structure Nutrient transport Outer membrane proteins Phenylalanine Polyamines Protein structure Proteins Research and Analysis Methods Threonine Tyrosine Valine |
title | Structural bioinformatics studies of bacterial outer membrane beta-barrel transporters and their AlphaFold2 predicted water-soluble QTY variants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20bioinformatics%20studies%20of%20bacterial%20outer%20membrane%20beta-barrel%20transporters%20and%20their%20AlphaFold2%20predicted%20water-soluble%20QTY%20variants&rft.jtitle=PloS%20one&rft.au=Sajeev-Sheeja,%20Akash&rft.date=2023-08-22&rft.volume=18&rft.issue=8&rft.spage=e0290360&rft.epage=e0290360&rft.pages=e0290360-e0290360&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0290360&rft_dat=%3Cgale_plos_%3EA761748157%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854906674&rft_id=info:pmid/37607179&rft_galeid=A761748157&rft_doaj_id=oai_doaj_org_article_faccd523f6df4f8ea609ed59684c2208&rfr_iscdi=true |