Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study

In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-08, Vol.18 (8), p.e0282346-e0282346
Hauptverfasser: Belavy, Daniel L, Tagliaferri, Scott D, Tegenthoff, Martin, Enax-Krumova, Elena, Schlaffke, Lara, Bühring, Björn, Schulte, Tobias L, Schmidt, Sein, Wilke, Hans-Joachim, Angelova, Maia, Trudel, Guy, Ehrenbrusthoff, Katja, Fitzgibbon, Bernadette, Van Oosterwijck, Jessica, Miller, Clint T, Owen, Patrick J, Bowe, Steven, Döding, Rebekka, Kaczorowski, Svenja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0282346
container_issue 8
container_start_page e0282346
container_title PloS one
container_volume 18
creator Belavy, Daniel L
Tagliaferri, Scott D
Tegenthoff, Martin
Enax-Krumova, Elena
Schlaffke, Lara
Bühring, Björn
Schulte, Tobias L
Schmidt, Sein
Wilke, Hans-Joachim
Angelova, Maia
Trudel, Guy
Ehrenbrusthoff, Katja
Fitzgibbon, Bernadette
Van Oosterwijck, Jessica
Miller, Clint T
Owen, Patrick J
Bowe, Steven
Döding, Rebekka
Kaczorowski, Svenja
description In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.
doi_str_mv 10.1371/journal.pone.0282346
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2854332792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A761643496</galeid><doaj_id>oai_doaj_org_article_32dd9c50e56d40eaac7200d2e19c8b71</doaj_id><sourcerecordid>A761643496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c619t-662e18fad4240d604e8fa8d5d633e1113ccef819ef3d3c4b596a8862b83b9dc53</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwD5CwhITgIsWOHSfeDRqlQKVKq8bg1nJsp3Vx7RI7Zfv3OLSgBe0C-cJfz3nPh32y7DmCE4Qr9Hbj-84JO9l5pyewqAtM6IPsFDFc5LSA-OGd9Un2JIQNhCWuKX2cneCKQlxidprdzPZGaSd1DoRTQIkoctWZvXZAWhGCaY0U0XgHfAus_wkaIb-DnTAO7I0AoosDYYQFxkVtrVkNYudg2fnopbeDWVxrsLyafZhPr_PF-yUIsVe3T7NHrbBBPzvOZ9nXj7Pr6ed8cflpPr1Y5JIiFnNKC43qVihSEKgoJDptalUqirFGCGEpdVsjplussCRNyaioa1o0NW6YkiU-y14cdHfWB34sWuBFXRKMi4oViZgfCOXFhu86sxXdLffC8N8HvlvxIU1pNceFUkyWUJdUEaiFkFUBoUohMlk3FUpa747e-marldQudsKORMc3zqz5yu85goSgipGk8Pqo0PkfvQ6Rb02QqbLCad8fAmeUpXdM6Mt_0PvTO1IrkTIwrvXJsRxE-UVFESU46SVqcg-VhtJbI9MXa006Hxm8GRkkJuqbuBJ9CHz-5er_2ctvY_bVHXathY3r4G0__MEwBskBlJ0PodPt3yojyIcO-VMNPnQIP3YI_gUpzwE6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854332792</pqid></control><display><type>article</type><title>Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Belavy, Daniel L ; Tagliaferri, Scott D ; Tegenthoff, Martin ; Enax-Krumova, Elena ; Schlaffke, Lara ; Bühring, Björn ; Schulte, Tobias L ; Schmidt, Sein ; Wilke, Hans-Joachim ; Angelova, Maia ; Trudel, Guy ; Ehrenbrusthoff, Katja ; Fitzgibbon, Bernadette ; Van Oosterwijck, Jessica ; Miller, Clint T ; Owen, Patrick J ; Bowe, Steven ; Döding, Rebekka ; Kaczorowski, Svenja</creator><contributor>Mockridge, James</contributor><creatorcontrib>Belavy, Daniel L ; Tagliaferri, Scott D ; Tegenthoff, Martin ; Enax-Krumova, Elena ; Schlaffke, Lara ; Bühring, Björn ; Schulte, Tobias L ; Schmidt, Sein ; Wilke, Hans-Joachim ; Angelova, Maia ; Trudel, Guy ; Ehrenbrusthoff, Katja ; Fitzgibbon, Bernadette ; Van Oosterwijck, Jessica ; Miller, Clint T ; Owen, Patrick J ; Bowe, Steven ; Döding, Rebekka ; Kaczorowski, Svenja ; Mockridge, James</creatorcontrib><description>In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0282346</identifier><identifier>PMID: 37603539</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Artificial intelligence ; Back pain ; Backache ; Biology and Life Sciences ; Cancer therapies ; Care and treatment ; Central nervous system ; Classification ; Clinical trials ; Clustering ; Composition ; Consent ; Diagnosis ; Disease ; Economic impact ; Health aspects ; Infections ; Inflammation ; Intervertebral discs ; Low back pain ; Machine learning ; Magnetic resonance ; Magnetic resonance imaging ; Medical research ; Medicine and Health Sciences ; Medicine, Experimental ; Nervous system ; Neural networks ; Neuroimaging ; Pain ; Patient outcomes ; Patients ; Research and Analysis Methods ; Sensitivity analysis ; Spinal cord ; Spinal stenosis ; Structure-function relationships ; Study Protocol ; Subgroups ; Surgery ; Systematic review ; Vertebrae</subject><ispartof>PloS one, 2023-08, Vol.18 (8), p.e0282346-e0282346</ispartof><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Belavy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Belavy et al 2023 Belavy et al</rights><rights>2023 Belavy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c619t-662e18fad4240d604e8fa8d5d633e1113ccef819ef3d3c4b596a8862b83b9dc53</cites><orcidid>0000-0002-0931-0916 ; 0000-0002-9307-832X ; 0000-0003-3924-9375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441794/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441794/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids></links><search><contributor>Mockridge, James</contributor><creatorcontrib>Belavy, Daniel L</creatorcontrib><creatorcontrib>Tagliaferri, Scott D</creatorcontrib><creatorcontrib>Tegenthoff, Martin</creatorcontrib><creatorcontrib>Enax-Krumova, Elena</creatorcontrib><creatorcontrib>Schlaffke, Lara</creatorcontrib><creatorcontrib>Bühring, Björn</creatorcontrib><creatorcontrib>Schulte, Tobias L</creatorcontrib><creatorcontrib>Schmidt, Sein</creatorcontrib><creatorcontrib>Wilke, Hans-Joachim</creatorcontrib><creatorcontrib>Angelova, Maia</creatorcontrib><creatorcontrib>Trudel, Guy</creatorcontrib><creatorcontrib>Ehrenbrusthoff, Katja</creatorcontrib><creatorcontrib>Fitzgibbon, Bernadette</creatorcontrib><creatorcontrib>Van Oosterwijck, Jessica</creatorcontrib><creatorcontrib>Miller, Clint T</creatorcontrib><creatorcontrib>Owen, Patrick J</creatorcontrib><creatorcontrib>Bowe, Steven</creatorcontrib><creatorcontrib>Döding, Rebekka</creatorcontrib><creatorcontrib>Kaczorowski, Svenja</creatorcontrib><title>Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study</title><title>PloS one</title><description>In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.</description><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Back pain</subject><subject>Backache</subject><subject>Biology and Life Sciences</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Central nervous system</subject><subject>Classification</subject><subject>Clinical trials</subject><subject>Clustering</subject><subject>Composition</subject><subject>Consent</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>Economic impact</subject><subject>Health aspects</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Intervertebral discs</subject><subject>Low back pain</subject><subject>Machine learning</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Experimental</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Pain</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>Research and Analysis Methods</subject><subject>Sensitivity analysis</subject><subject>Spinal cord</subject><subject>Spinal stenosis</subject><subject>Structure-function relationships</subject><subject>Study Protocol</subject><subject>Subgroups</subject><subject>Surgery</subject><subject>Systematic review</subject><subject>Vertebrae</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwD5CwhITgIsWOHSfeDRqlQKVKq8bg1nJsp3Vx7RI7Zfv3OLSgBe0C-cJfz3nPh32y7DmCE4Qr9Hbj-84JO9l5pyewqAtM6IPsFDFc5LSA-OGd9Un2JIQNhCWuKX2cneCKQlxidprdzPZGaSd1DoRTQIkoctWZvXZAWhGCaY0U0XgHfAus_wkaIb-DnTAO7I0AoosDYYQFxkVtrVkNYudg2fnopbeDWVxrsLyafZhPr_PF-yUIsVe3T7NHrbBBPzvOZ9nXj7Pr6ed8cflpPr1Y5JIiFnNKC43qVihSEKgoJDptalUqirFGCGEpdVsjplussCRNyaioa1o0NW6YkiU-y14cdHfWB34sWuBFXRKMi4oViZgfCOXFhu86sxXdLffC8N8HvlvxIU1pNceFUkyWUJdUEaiFkFUBoUohMlk3FUpa747e-marldQudsKORMc3zqz5yu85goSgipGk8Pqo0PkfvQ6Rb02QqbLCad8fAmeUpXdM6Mt_0PvTO1IrkTIwrvXJsRxE-UVFESU46SVqcg-VhtJbI9MXa006Hxm8GRkkJuqbuBJ9CHz-5er_2ctvY_bVHXathY3r4G0__MEwBskBlJ0PodPt3yojyIcO-VMNPnQIP3YI_gUpzwE6</recordid><startdate>20230821</startdate><enddate>20230821</enddate><creator>Belavy, Daniel L</creator><creator>Tagliaferri, Scott D</creator><creator>Tegenthoff, Martin</creator><creator>Enax-Krumova, Elena</creator><creator>Schlaffke, Lara</creator><creator>Bühring, Björn</creator><creator>Schulte, Tobias L</creator><creator>Schmidt, Sein</creator><creator>Wilke, Hans-Joachim</creator><creator>Angelova, Maia</creator><creator>Trudel, Guy</creator><creator>Ehrenbrusthoff, Katja</creator><creator>Fitzgibbon, Bernadette</creator><creator>Van Oosterwijck, Jessica</creator><creator>Miller, Clint T</creator><creator>Owen, Patrick J</creator><creator>Bowe, Steven</creator><creator>Döding, Rebekka</creator><creator>Kaczorowski, Svenja</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0931-0916</orcidid><orcidid>https://orcid.org/0000-0002-9307-832X</orcidid><orcidid>https://orcid.org/0000-0003-3924-9375</orcidid></search><sort><creationdate>20230821</creationdate><title>Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study</title><author>Belavy, Daniel L ; Tagliaferri, Scott D ; Tegenthoff, Martin ; Enax-Krumova, Elena ; Schlaffke, Lara ; Bühring, Björn ; Schulte, Tobias L ; Schmidt, Sein ; Wilke, Hans-Joachim ; Angelova, Maia ; Trudel, Guy ; Ehrenbrusthoff, Katja ; Fitzgibbon, Bernadette ; Van Oosterwijck, Jessica ; Miller, Clint T ; Owen, Patrick J ; Bowe, Steven ; Döding, Rebekka ; Kaczorowski, Svenja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c619t-662e18fad4240d604e8fa8d5d633e1113ccef819ef3d3c4b596a8862b83b9dc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Back pain</topic><topic>Backache</topic><topic>Biology and Life Sciences</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Central nervous system</topic><topic>Classification</topic><topic>Clinical trials</topic><topic>Clustering</topic><topic>Composition</topic><topic>Consent</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>Economic impact</topic><topic>Health aspects</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Intervertebral discs</topic><topic>Low back pain</topic><topic>Machine learning</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Experimental</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Pain</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>Research and Analysis Methods</topic><topic>Sensitivity analysis</topic><topic>Spinal cord</topic><topic>Spinal stenosis</topic><topic>Structure-function relationships</topic><topic>Study Protocol</topic><topic>Subgroups</topic><topic>Surgery</topic><topic>Systematic review</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belavy, Daniel L</creatorcontrib><creatorcontrib>Tagliaferri, Scott D</creatorcontrib><creatorcontrib>Tegenthoff, Martin</creatorcontrib><creatorcontrib>Enax-Krumova, Elena</creatorcontrib><creatorcontrib>Schlaffke, Lara</creatorcontrib><creatorcontrib>Bühring, Björn</creatorcontrib><creatorcontrib>Schulte, Tobias L</creatorcontrib><creatorcontrib>Schmidt, Sein</creatorcontrib><creatorcontrib>Wilke, Hans-Joachim</creatorcontrib><creatorcontrib>Angelova, Maia</creatorcontrib><creatorcontrib>Trudel, Guy</creatorcontrib><creatorcontrib>Ehrenbrusthoff, Katja</creatorcontrib><creatorcontrib>Fitzgibbon, Bernadette</creatorcontrib><creatorcontrib>Van Oosterwijck, Jessica</creatorcontrib><creatorcontrib>Miller, Clint T</creatorcontrib><creatorcontrib>Owen, Patrick J</creatorcontrib><creatorcontrib>Bowe, Steven</creatorcontrib><creatorcontrib>Döding, Rebekka</creatorcontrib><creatorcontrib>Kaczorowski, Svenja</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belavy, Daniel L</au><au>Tagliaferri, Scott D</au><au>Tegenthoff, Martin</au><au>Enax-Krumova, Elena</au><au>Schlaffke, Lara</au><au>Bühring, Björn</au><au>Schulte, Tobias L</au><au>Schmidt, Sein</au><au>Wilke, Hans-Joachim</au><au>Angelova, Maia</au><au>Trudel, Guy</au><au>Ehrenbrusthoff, Katja</au><au>Fitzgibbon, Bernadette</au><au>Van Oosterwijck, Jessica</au><au>Miller, Clint T</au><au>Owen, Patrick J</au><au>Bowe, Steven</au><au>Döding, Rebekka</au><au>Kaczorowski, Svenja</au><au>Mockridge, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study</atitle><jtitle>PloS one</jtitle><date>2023-08-21</date><risdate>2023</risdate><volume>18</volume><issue>8</issue><spage>e0282346</spage><epage>e0282346</epage><pages>e0282346-e0282346</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>37603539</pmid><doi>10.1371/journal.pone.0282346</doi><tpages>e0282346</tpages><orcidid>https://orcid.org/0000-0002-0931-0916</orcidid><orcidid>https://orcid.org/0000-0002-9307-832X</orcidid><orcidid>https://orcid.org/0000-0003-3924-9375</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-08, Vol.18 (8), p.e0282346-e0282346
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2854332792
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Artificial intelligence
Back pain
Backache
Biology and Life Sciences
Cancer therapies
Care and treatment
Central nervous system
Classification
Clinical trials
Clustering
Composition
Consent
Diagnosis
Disease
Economic impact
Health aspects
Infections
Inflammation
Intervertebral discs
Low back pain
Machine learning
Magnetic resonance
Magnetic resonance imaging
Medical research
Medicine and Health Sciences
Medicine, Experimental
Nervous system
Neural networks
Neuroimaging
Pain
Patient outcomes
Patients
Research and Analysis Methods
Sensitivity analysis
Spinal cord
Spinal stenosis
Structure-function relationships
Study Protocol
Subgroups
Surgery
Systematic review
Vertebrae
title Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence-%20and%20data-driven%20classification%20of%20low%20back%20pain%20via%20artificial%20intelligence:%20Protocol%20of%20the%20PREDICT-LBP%20study&rft.jtitle=PloS%20one&rft.au=Belavy,%20Daniel%20L&rft.date=2023-08-21&rft.volume=18&rft.issue=8&rft.spage=e0282346&rft.epage=e0282346&rft.pages=e0282346-e0282346&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0282346&rft_dat=%3Cgale_plos_%3EA761643496%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854332792&rft_id=info:pmid/37603539&rft_galeid=A761643496&rft_doaj_id=oai_doaj_org_article_32dd9c50e56d40eaac7200d2e19c8b71&rfr_iscdi=true