Thousands of Pristionchus pacificus orphan genes were integrated into developmental networks that respond to diverse environmental microbiota

Adaptation of organisms to environmental change may be facilitated by the creation of new genes. New genes without homologs in other lineages are known as taxonomically-restricted orphan genes and may result from divergence or de novo formation. Previously, we have extensively characterized the evol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2023-07, Vol.19 (7), p.e1010832-e1010832
Hauptverfasser: Athanasouli, Marina, Akduman, Nermin, Röseler, Waltraud, Theam, Penghieng, Rödelsperger, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010832
container_issue 7
container_start_page e1010832
container_title PLoS genetics
container_volume 19
creator Athanasouli, Marina
Akduman, Nermin
Röseler, Waltraud
Theam, Penghieng
Rödelsperger, Christian
description Adaptation of organisms to environmental change may be facilitated by the creation of new genes. New genes without homologs in other lineages are known as taxonomically-restricted orphan genes and may result from divergence or de novo formation. Previously, we have extensively characterized the evolution and origin of such orphan genes in the nematode model organism Pristionchus pacificus. Here, we employ large-scale transcriptomics to establish potential functional associations and to measure the degree of transcriptional plasticity among orphan genes. Specifically, we analyzed 24 RNA-seq samples from adult P. pacificus worms raised on 24 different monoxenic bacterial cultures. Based on coexpression analysis, we identified 28 large modules that harbor 3,727 diplogastrid-specific orphan genes and that respond dynamically to different bacteria. These coexpression modules have distinct regulatory architecture and also exhibit differential expression patterns across development suggesting a link between bacterial response networks and development. Phylostratigraphy revealed a considerably high number of family- and even species-specific orphan genes in certain coexpression modules. This suggests that new genes are not attached randomly to existing cellular networks and that integration can happen very fast. Integrative analysis of protein domains, gene expression and ortholog data facilitated the assignments of biological labels for 22 coexpression modules with one of the largest, fast-evolving module being associated with spermatogenesis. In summary, this work presents the first functional annotation for thousands of P. pacificus orphan genes and reveals insights into their integration into environmentally responsive gene networks.
doi_str_mv 10.1371/journal.pgen.1010832
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2851974417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759564321</galeid><sourcerecordid>A759564321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-9eb8c4afde7c1606babf7d781c46f1196c0717f9049572cbf7a5f71dee92c7a73</originalsourceid><addsrcrecordid>eNqVk81u1DAQxyMEoqXwBggsISE47GLHSZycUFXxUamiCApXy-uMNy5eO9jOtn0I3hmHptUG9QCyJY88v_mPNZ7JsqcELwll5M25G7wVZtmvwS4JJrim-b1sn5QlXbACF_d37L3sUQjnGNOybtjDbI8y2jQ5JvvZr7PODUHYNiCn0GevQ9TOym4IqBdSKy2T5XzfCYtSIgjoAjwgbSOsvYjQjqZDLWzBuH4DNgqDLMQL538EFDsRkYfQO9uiEdNb8AEQ2K32zk74RkvvVtpF8Th7oIQJ8GQ6D7Jv79-dHX1cnJx-OD46PFnIqiJx0cCqloVQLTBJKlytxEqxltVEFpUipKkkZoSpBhdNyXKZnKJUjLQATS6ZYPQge36t2xsX-FTJwPO6JA0rCjISbydiWG2glemlXhjee70R_oo7ofncY3XH127LCaZFXVYkKbyaFLz7OUCIfKODBGOEhVTylIxSnKc9oi_-Qu9-0kSthQGurXIpsRxF-SErm7Iq6B-t5R1UWi2kOjsLSqf7WcDrWUBiIlzGtRhC4Mdfv_wH--nf2dPvc_blDtuBMLELzgxjL4Y5WFyDqWNC8KBuf4RgPo7FTeX4OBZ8GosU9mz3N2-DbuaA_gZN-wuO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851974417</pqid></control><display><type>article</type><title>Thousands of Pristionchus pacificus orphan genes were integrated into developmental networks that respond to diverse environmental microbiota</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Athanasouli, Marina ; Akduman, Nermin ; Röseler, Waltraud ; Theam, Penghieng ; Rödelsperger, Christian</creator><contributor>Ashrafi, Kaveh</contributor><creatorcontrib>Athanasouli, Marina ; Akduman, Nermin ; Röseler, Waltraud ; Theam, Penghieng ; Rödelsperger, Christian ; Ashrafi, Kaveh</creatorcontrib><description>Adaptation of organisms to environmental change may be facilitated by the creation of new genes. New genes without homologs in other lineages are known as taxonomically-restricted orphan genes and may result from divergence or de novo formation. Previously, we have extensively characterized the evolution and origin of such orphan genes in the nematode model organism Pristionchus pacificus. Here, we employ large-scale transcriptomics to establish potential functional associations and to measure the degree of transcriptional plasticity among orphan genes. Specifically, we analyzed 24 RNA-seq samples from adult P. pacificus worms raised on 24 different monoxenic bacterial cultures. Based on coexpression analysis, we identified 28 large modules that harbor 3,727 diplogastrid-specific orphan genes and that respond dynamically to different bacteria. These coexpression modules have distinct regulatory architecture and also exhibit differential expression patterns across development suggesting a link between bacterial response networks and development. Phylostratigraphy revealed a considerably high number of family- and even species-specific orphan genes in certain coexpression modules. This suggests that new genes are not attached randomly to existing cellular networks and that integration can happen very fast. Integrative analysis of protein domains, gene expression and ortholog data facilitated the assignments of biological labels for 22 coexpression modules with one of the largest, fast-evolving module being associated with spermatogenesis. In summary, this work presents the first functional annotation for thousands of P. pacificus orphan genes and reveals insights into their integration into environmentally responsive gene networks.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010832</identifier><identifier>PMID: 37399201</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bacteria ; Biology and Life Sciences ; Computer and Information Sciences ; Environmental changes ; Evolution ; Evolutionary genetics ; Gene expression ; Genes ; Genetic aspects ; Genetic research ; Genetic transcription ; Genomes ; Identification and classification ; Metabolism ; Microbiota ; Microbiota (Symbiotic organisms) ; Nematoda ; Nematodes ; Neurosciences ; Phylogenetics ; Pristionchus pacificus ; Research and Analysis Methods ; Spermatogenesis ; Taxonomy ; Transcriptomics ; Trends ; Worms</subject><ispartof>PLoS genetics, 2023-07, Vol.19 (7), p.e1010832-e1010832</ispartof><rights>Copyright: © 2023 Athanasouli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Athanasouli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Athanasouli et al 2023 Athanasouli et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-9eb8c4afde7c1606babf7d781c46f1196c0717f9049572cbf7a5f71dee92c7a73</citedby><cites>FETCH-LOGICAL-c661t-9eb8c4afde7c1606babf7d781c46f1196c0717f9049572cbf7a5f71dee92c7a73</cites><orcidid>0000-0002-7905-9675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348561/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348561/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37399201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ashrafi, Kaveh</contributor><creatorcontrib>Athanasouli, Marina</creatorcontrib><creatorcontrib>Akduman, Nermin</creatorcontrib><creatorcontrib>Röseler, Waltraud</creatorcontrib><creatorcontrib>Theam, Penghieng</creatorcontrib><creatorcontrib>Rödelsperger, Christian</creatorcontrib><title>Thousands of Pristionchus pacificus orphan genes were integrated into developmental networks that respond to diverse environmental microbiota</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Adaptation of organisms to environmental change may be facilitated by the creation of new genes. New genes without homologs in other lineages are known as taxonomically-restricted orphan genes and may result from divergence or de novo formation. Previously, we have extensively characterized the evolution and origin of such orphan genes in the nematode model organism Pristionchus pacificus. Here, we employ large-scale transcriptomics to establish potential functional associations and to measure the degree of transcriptional plasticity among orphan genes. Specifically, we analyzed 24 RNA-seq samples from adult P. pacificus worms raised on 24 different monoxenic bacterial cultures. Based on coexpression analysis, we identified 28 large modules that harbor 3,727 diplogastrid-specific orphan genes and that respond dynamically to different bacteria. These coexpression modules have distinct regulatory architecture and also exhibit differential expression patterns across development suggesting a link between bacterial response networks and development. Phylostratigraphy revealed a considerably high number of family- and even species-specific orphan genes in certain coexpression modules. This suggests that new genes are not attached randomly to existing cellular networks and that integration can happen very fast. Integrative analysis of protein domains, gene expression and ortholog data facilitated the assignments of biological labels for 22 coexpression modules with one of the largest, fast-evolving module being associated with spermatogenesis. In summary, this work presents the first functional annotation for thousands of P. pacificus orphan genes and reveals insights into their integration into environmentally responsive gene networks.</description><subject>Analysis</subject><subject>Bacteria</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Environmental changes</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Identification and classification</subject><subject>Metabolism</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Nematoda</subject><subject>Nematodes</subject><subject>Neurosciences</subject><subject>Phylogenetics</subject><subject>Pristionchus pacificus</subject><subject>Research and Analysis Methods</subject><subject>Spermatogenesis</subject><subject>Taxonomy</subject><subject>Transcriptomics</subject><subject>Trends</subject><subject>Worms</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqVk81u1DAQxyMEoqXwBggsISE47GLHSZycUFXxUamiCApXy-uMNy5eO9jOtn0I3hmHptUG9QCyJY88v_mPNZ7JsqcELwll5M25G7wVZtmvwS4JJrim-b1sn5QlXbACF_d37L3sUQjnGNOybtjDbI8y2jQ5JvvZr7PODUHYNiCn0GevQ9TOym4IqBdSKy2T5XzfCYtSIgjoAjwgbSOsvYjQjqZDLWzBuH4DNgqDLMQL538EFDsRkYfQO9uiEdNb8AEQ2K32zk74RkvvVtpF8Th7oIQJ8GQ6D7Jv79-dHX1cnJx-OD46PFnIqiJx0cCqloVQLTBJKlytxEqxltVEFpUipKkkZoSpBhdNyXKZnKJUjLQATS6ZYPQge36t2xsX-FTJwPO6JA0rCjISbydiWG2glemlXhjee70R_oo7ofncY3XH127LCaZFXVYkKbyaFLz7OUCIfKODBGOEhVTylIxSnKc9oi_-Qu9-0kSthQGurXIpsRxF-SErm7Iq6B-t5R1UWi2kOjsLSqf7WcDrWUBiIlzGtRhC4Mdfv_wH--nf2dPvc_blDtuBMLELzgxjL4Y5WFyDqWNC8KBuf4RgPo7FTeX4OBZ8GosU9mz3N2-DbuaA_gZN-wuO</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Athanasouli, Marina</creator><creator>Akduman, Nermin</creator><creator>Röseler, Waltraud</creator><creator>Theam, Penghieng</creator><creator>Rödelsperger, Christian</creator><general>Public Library of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7905-9675</orcidid></search><sort><creationdate>20230703</creationdate><title>Thousands of Pristionchus pacificus orphan genes were integrated into developmental networks that respond to diverse environmental microbiota</title><author>Athanasouli, Marina ; Akduman, Nermin ; Röseler, Waltraud ; Theam, Penghieng ; Rödelsperger, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-9eb8c4afde7c1606babf7d781c46f1196c0717f9049572cbf7a5f71dee92c7a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Bacteria</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Environmental changes</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Identification and classification</topic><topic>Metabolism</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Nematoda</topic><topic>Nematodes</topic><topic>Neurosciences</topic><topic>Phylogenetics</topic><topic>Pristionchus pacificus</topic><topic>Research and Analysis Methods</topic><topic>Spermatogenesis</topic><topic>Taxonomy</topic><topic>Transcriptomics</topic><topic>Trends</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athanasouli, Marina</creatorcontrib><creatorcontrib>Akduman, Nermin</creatorcontrib><creatorcontrib>Röseler, Waltraud</creatorcontrib><creatorcontrib>Theam, Penghieng</creatorcontrib><creatorcontrib>Rödelsperger, Christian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athanasouli, Marina</au><au>Akduman, Nermin</au><au>Röseler, Waltraud</au><au>Theam, Penghieng</au><au>Rödelsperger, Christian</au><au>Ashrafi, Kaveh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thousands of Pristionchus pacificus orphan genes were integrated into developmental networks that respond to diverse environmental microbiota</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2023-07-03</date><risdate>2023</risdate><volume>19</volume><issue>7</issue><spage>e1010832</spage><epage>e1010832</epage><pages>e1010832-e1010832</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Adaptation of organisms to environmental change may be facilitated by the creation of new genes. New genes without homologs in other lineages are known as taxonomically-restricted orphan genes and may result from divergence or de novo formation. Previously, we have extensively characterized the evolution and origin of such orphan genes in the nematode model organism Pristionchus pacificus. Here, we employ large-scale transcriptomics to establish potential functional associations and to measure the degree of transcriptional plasticity among orphan genes. Specifically, we analyzed 24 RNA-seq samples from adult P. pacificus worms raised on 24 different monoxenic bacterial cultures. Based on coexpression analysis, we identified 28 large modules that harbor 3,727 diplogastrid-specific orphan genes and that respond dynamically to different bacteria. These coexpression modules have distinct regulatory architecture and also exhibit differential expression patterns across development suggesting a link between bacterial response networks and development. Phylostratigraphy revealed a considerably high number of family- and even species-specific orphan genes in certain coexpression modules. This suggests that new genes are not attached randomly to existing cellular networks and that integration can happen very fast. Integrative analysis of protein domains, gene expression and ortholog data facilitated the assignments of biological labels for 22 coexpression modules with one of the largest, fast-evolving module being associated with spermatogenesis. In summary, this work presents the first functional annotation for thousands of P. pacificus orphan genes and reveals insights into their integration into environmentally responsive gene networks.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37399201</pmid><doi>10.1371/journal.pgen.1010832</doi><tpages>e1010832</tpages><orcidid>https://orcid.org/0000-0002-7905-9675</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2023-07, Vol.19 (7), p.e1010832-e1010832
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2851974417
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Bacteria
Biology and Life Sciences
Computer and Information Sciences
Environmental changes
Evolution
Evolutionary genetics
Gene expression
Genes
Genetic aspects
Genetic research
Genetic transcription
Genomes
Identification and classification
Metabolism
Microbiota
Microbiota (Symbiotic organisms)
Nematoda
Nematodes
Neurosciences
Phylogenetics
Pristionchus pacificus
Research and Analysis Methods
Spermatogenesis
Taxonomy
Transcriptomics
Trends
Worms
title Thousands of Pristionchus pacificus orphan genes were integrated into developmental networks that respond to diverse environmental microbiota
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thousands%20of%20Pristionchus%20pacificus%20orphan%20genes%20were%20integrated%20into%20developmental%20networks%20that%20respond%20to%20diverse%20environmental%20microbiota&rft.jtitle=PLoS%20genetics&rft.au=Athanasouli,%20Marina&rft.date=2023-07-03&rft.volume=19&rft.issue=7&rft.spage=e1010832&rft.epage=e1010832&rft.pages=e1010832-e1010832&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010832&rft_dat=%3Cgale_plos_%3EA759564321%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851974417&rft_id=info:pmid/37399201&rft_galeid=A759564321&rfr_iscdi=true