Application of referenced thermodynamic integration to Bayesian model selection
Evaluating normalising constants is important across a range of topics in statistical learning, notably Bayesian model selection. However, in many realistic problems this involves the integration of analytically intractable, high-dimensional distributions, and therefore requires the use of stochasti...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-08, Vol.18 (8), p.e0289889-e0289889 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0289889 |
---|---|
container_issue | 8 |
container_start_page | e0289889 |
container_title | PloS one |
container_volume | 18 |
creator | Hawryluk, Iwona Mishra, Swapnil Flaxman, Seth Bhatt, Samir Mellan, Thomas A |
description | Evaluating normalising constants is important across a range of topics in statistical learning, notably Bayesian model selection. However, in many realistic problems this involves the integration of analytically intractable, high-dimensional distributions, and therefore requires the use of stochastic methods such as thermodynamic integration (TI). In this paper we apply a simple but under-appreciated variation of the TI method, here referred to as referenced TI, which computes a single model's normalising constant in an efficient way by using a judiciously chosen reference density. The advantages of the approach and theoretical considerations are set out, along with pedagogical 1 and 2D examples. The approach is shown to be useful in practice when applied to a real problem -to perform model selection for a semi-mechanistic hierarchical Bayesian model of COVID-19 transmission in South Korea involving the integration of a 200D density. |
doi_str_mv | 10.1371/journal.pone.0289889 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2850543393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760789307</galeid><doaj_id>oai_doaj_org_article_77e2c1275e5e499d8d657e8f93385c7e</doaj_id><sourcerecordid>A760789307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-f7f810da3fe2539d6ed866f984e5373b5930c151d655a12e8e7899c6269ad6c83</originalsourceid><addsrcrecordid>eNqNkkuP0zAUhSMEYoaBf4AgEhKCRYsfcWyvUBnxqDRSJV5by2PftK7cuNgJov8eZ5oZNWgWKAtH9nfOvb4-RfEcozmmHL_bhj622s_3oYU5IkIKIR8U51hSMqsJog9P_s-KJyltEWJU1PXj4oxyxrOAnxerxX7vndGdC20ZmjJCAxFaA7bsNhB3wR5avXOmdG0H63jkulB-0AdITrdlJsCXCTyY4exp8ajRPsGzcb0ofnz6-P3yy-xq9Xl5ubiamboi3azhjcDIatoAYVTaGmzurJGiAkY5vWaSIoMZtjVjGhMQkPuVpia11LY2gl4UL4--ex-SGmeRFBEMsYpSSTOxPBI26K3aR7fT8aCCdupmI8S10rFzxoPiHIjBhDNgUElpRS7LQTTZRTDDIXu9H6v11zuwBtouaj8xnZ60bqPW4bfCqCKVqIdu3owOMfzqIXVq55IB73ULob9pHOMKV1xm9NU_6P3XG6m1zjdwbRNyYTOYqgWvUR4XRTxT83uo_FnIj5qT07i8PxG8nQgy08Gfbq37lNTy29f_Z1c_p-zrE3YD2nebFHw_ZCZNweoImhhSynG8mzJGagj-7TTUEHw1Bj_LXpy-0J3oNun0L1WY_VE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850543393</pqid></control><display><type>article</type><title>Application of referenced thermodynamic integration to Bayesian model selection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hawryluk, Iwona ; Mishra, Swapnil ; Flaxman, Seth ; Bhatt, Samir ; Mellan, Thomas A</creator><contributor>Hadizadeh, Mohammadreza</contributor><creatorcontrib>Hawryluk, Iwona ; Mishra, Swapnil ; Flaxman, Seth ; Bhatt, Samir ; Mellan, Thomas A ; Hadizadeh, Mohammadreza</creatorcontrib><description>Evaluating normalising constants is important across a range of topics in statistical learning, notably Bayesian model selection. However, in many realistic problems this involves the integration of analytically intractable, high-dimensional distributions, and therefore requires the use of stochastic methods such as thermodynamic integration (TI). In this paper we apply a simple but under-appreciated variation of the TI method, here referred to as referenced TI, which computes a single model's normalising constant in an efficient way by using a judiciously chosen reference density. The advantages of the approach and theoretical considerations are set out, along with pedagogical 1 and 2D examples. The approach is shown to be useful in practice when applied to a real problem -to perform model selection for a semi-mechanistic hierarchical Bayesian model of COVID-19 transmission in South Korea involving the integration of a 200D density.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0289889</identifier><identifier>PMID: 37578987</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayes Theorem ; Bayesian analysis ; Bayesian information criterion ; COVID-19 ; Density ; Dimensional analysis ; Humans ; Hypotheses ; Integrals ; Integration ; Machine learning ; Mathematical models ; Medicine and Health Sciences ; Methods ; Modelling ; People and places ; Physical Sciences ; Republic of Korea ; Research and analysis methods ; Stochastic methods ; Stochasticity ; Thermodynamics</subject><ispartof>PloS one, 2023-08, Vol.18 (8), p.e0289889-e0289889</ispartof><rights>Copyright: © 2023 Hawryluk et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Hawryluk et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Hawryluk et al 2023 Hawryluk et al</rights><rights>2023 Hawryluk et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-f7f810da3fe2539d6ed866f984e5373b5930c151d655a12e8e7899c6269ad6c83</cites><orcidid>0000-0001-6919-4366 ; 0000-0002-8759-5902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424863/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424863/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37578987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hadizadeh, Mohammadreza</contributor><creatorcontrib>Hawryluk, Iwona</creatorcontrib><creatorcontrib>Mishra, Swapnil</creatorcontrib><creatorcontrib>Flaxman, Seth</creatorcontrib><creatorcontrib>Bhatt, Samir</creatorcontrib><creatorcontrib>Mellan, Thomas A</creatorcontrib><title>Application of referenced thermodynamic integration to Bayesian model selection</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Evaluating normalising constants is important across a range of topics in statistical learning, notably Bayesian model selection. However, in many realistic problems this involves the integration of analytically intractable, high-dimensional distributions, and therefore requires the use of stochastic methods such as thermodynamic integration (TI). In this paper we apply a simple but under-appreciated variation of the TI method, here referred to as referenced TI, which computes a single model's normalising constant in an efficient way by using a judiciously chosen reference density. The advantages of the approach and theoretical considerations are set out, along with pedagogical 1 and 2D examples. The approach is shown to be useful in practice when applied to a real problem -to perform model selection for a semi-mechanistic hierarchical Bayesian model of COVID-19 transmission in South Korea involving the integration of a 200D density.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian information criterion</subject><subject>COVID-19</subject><subject>Density</subject><subject>Dimensional analysis</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Integrals</subject><subject>Integration</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Modelling</subject><subject>People and places</subject><subject>Physical Sciences</subject><subject>Republic of Korea</subject><subject>Research and analysis methods</subject><subject>Stochastic methods</subject><subject>Stochasticity</subject><subject>Thermodynamics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkkuP0zAUhSMEYoaBf4AgEhKCRYsfcWyvUBnxqDRSJV5by2PftK7cuNgJov8eZ5oZNWgWKAtH9nfOvb4-RfEcozmmHL_bhj622s_3oYU5IkIKIR8U51hSMqsJog9P_s-KJyltEWJU1PXj4oxyxrOAnxerxX7vndGdC20ZmjJCAxFaA7bsNhB3wR5avXOmdG0H63jkulB-0AdITrdlJsCXCTyY4exp8ajRPsGzcb0ofnz6-P3yy-xq9Xl5ubiamboi3azhjcDIatoAYVTaGmzurJGiAkY5vWaSIoMZtjVjGhMQkPuVpia11LY2gl4UL4--ex-SGmeRFBEMsYpSSTOxPBI26K3aR7fT8aCCdupmI8S10rFzxoPiHIjBhDNgUElpRS7LQTTZRTDDIXu9H6v11zuwBtouaj8xnZ60bqPW4bfCqCKVqIdu3owOMfzqIXVq55IB73ULob9pHOMKV1xm9NU_6P3XG6m1zjdwbRNyYTOYqgWvUR4XRTxT83uo_FnIj5qT07i8PxG8nQgy08Gfbq37lNTy29f_Z1c_p-zrE3YD2nebFHw_ZCZNweoImhhSynG8mzJGagj-7TTUEHw1Bj_LXpy-0J3oNun0L1WY_VE</recordid><startdate>20230814</startdate><enddate>20230814</enddate><creator>Hawryluk, Iwona</creator><creator>Mishra, Swapnil</creator><creator>Flaxman, Seth</creator><creator>Bhatt, Samir</creator><creator>Mellan, Thomas A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6919-4366</orcidid><orcidid>https://orcid.org/0000-0002-8759-5902</orcidid></search><sort><creationdate>20230814</creationdate><title>Application of referenced thermodynamic integration to Bayesian model selection</title><author>Hawryluk, Iwona ; Mishra, Swapnil ; Flaxman, Seth ; Bhatt, Samir ; Mellan, Thomas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-f7f810da3fe2539d6ed866f984e5373b5930c151d655a12e8e7899c6269ad6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian information criterion</topic><topic>COVID-19</topic><topic>Density</topic><topic>Dimensional analysis</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Integrals</topic><topic>Integration</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Modelling</topic><topic>People and places</topic><topic>Physical Sciences</topic><topic>Republic of Korea</topic><topic>Research and analysis methods</topic><topic>Stochastic methods</topic><topic>Stochasticity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hawryluk, Iwona</creatorcontrib><creatorcontrib>Mishra, Swapnil</creatorcontrib><creatorcontrib>Flaxman, Seth</creatorcontrib><creatorcontrib>Bhatt, Samir</creatorcontrib><creatorcontrib>Mellan, Thomas A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawryluk, Iwona</au><au>Mishra, Swapnil</au><au>Flaxman, Seth</au><au>Bhatt, Samir</au><au>Mellan, Thomas A</au><au>Hadizadeh, Mohammadreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of referenced thermodynamic integration to Bayesian model selection</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-08-14</date><risdate>2023</risdate><volume>18</volume><issue>8</issue><spage>e0289889</spage><epage>e0289889</epage><pages>e0289889-e0289889</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Evaluating normalising constants is important across a range of topics in statistical learning, notably Bayesian model selection. However, in many realistic problems this involves the integration of analytically intractable, high-dimensional distributions, and therefore requires the use of stochastic methods such as thermodynamic integration (TI). In this paper we apply a simple but under-appreciated variation of the TI method, here referred to as referenced TI, which computes a single model's normalising constant in an efficient way by using a judiciously chosen reference density. The advantages of the approach and theoretical considerations are set out, along with pedagogical 1 and 2D examples. The approach is shown to be useful in practice when applied to a real problem -to perform model selection for a semi-mechanistic hierarchical Bayesian model of COVID-19 transmission in South Korea involving the integration of a 200D density.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37578987</pmid><doi>10.1371/journal.pone.0289889</doi><tpages>e0289889</tpages><orcidid>https://orcid.org/0000-0001-6919-4366</orcidid><orcidid>https://orcid.org/0000-0002-8759-5902</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-08, Vol.18 (8), p.e0289889-e0289889 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2850543393 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bayes Theorem Bayesian analysis Bayesian information criterion COVID-19 Density Dimensional analysis Humans Hypotheses Integrals Integration Machine learning Mathematical models Medicine and Health Sciences Methods Modelling People and places Physical Sciences Republic of Korea Research and analysis methods Stochastic methods Stochasticity Thermodynamics |
title | Application of referenced thermodynamic integration to Bayesian model selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20referenced%20thermodynamic%20integration%20to%20Bayesian%20model%20selection&rft.jtitle=PloS%20one&rft.au=Hawryluk,%20Iwona&rft.date=2023-08-14&rft.volume=18&rft.issue=8&rft.spage=e0289889&rft.epage=e0289889&rft.pages=e0289889-e0289889&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0289889&rft_dat=%3Cgale_plos_%3EA760789307%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850543393&rft_id=info:pmid/37578987&rft_galeid=A760789307&rft_doaj_id=oai_doaj_org_article_77e2c1275e5e499d8d657e8f93385c7e&rfr_iscdi=true |