A Harris Hawk Optimisation system for energy and resource efficient virtual machine placement in cloud data centers

Virtualisation is a major technology in cloud computing for optimising the cloud data centre's power usage. In the current scenario, most of the services are migrated to the cloud, putting more load on the cloud data centres. As a result, the data center's size expands resulting in increas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-08, Vol.18 (8), p.e0289156-e0289156
Hauptverfasser: H S, Madhusudhan, T, Satish Kumar, Gupta, Punit, McArdle, Gavin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0289156
container_issue 8
container_start_page e0289156
container_title PloS one
container_volume 18
creator H S, Madhusudhan
T, Satish Kumar
Gupta, Punit
McArdle, Gavin
description Virtualisation is a major technology in cloud computing for optimising the cloud data centre's power usage. In the current scenario, most of the services are migrated to the cloud, putting more load on the cloud data centres. As a result, the data center's size expands resulting in increased energy usage. To address this problem, a resource allocation optimisation method that is both efficient and effective is necessary. The optimal utilisation of cloud infrastructure and optimisation algorithms plays a vital role. The cloud resources rely on the allocation policy of the virtual machine on cloud resources. A virtual machine placement technique, based on the Harris Hawk Optimisation (HHO) model for the cloud data centre is presented in this paper. The proposed HHO model aims to find the best place for virtual machines on suitable hosts with the least load and power consumption. PlanetLab's real-time workload traces are used for performance evaluation with existing PSO (Particle Swarm Optimisation) and PABFD (Best Fit Decreasing). The performance evaluation of the proposed method is done using power consumption, SLA, CPU utilisation, RAM utilisation, Execution time (ms) and the number of VM migrations. The performance evaluation is done using two simulation scenarios with scaling workload in scenario 1 and increasing resources for the virtual machine to study the performance in underloaded and overloaded conditions. Experimental results show that the proposed HHO algorithm improved execution time(ms) by 4%, had a 27% reduction in power consumption, a 16% reduction in SLA violation and an increase in resource utilisation by 17%. The HHO algorithm is also effective in handling dynamic and uncertain environments, making it suitable for real-world cloud infrastructures.
doi_str_mv 10.1371/journal.pone.0289156
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2849304902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760412019</galeid><sourcerecordid>A760412019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646t-32e87fb009e4266e53a533e9741a0c66a52f2b315a54b717c578b0d513e37b83</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbF39B6IBQfRi12QyycxcyVLUFgoLWrwNmcyZ3dRMsk0y1f33Zui07EgvJBcJ5zzngzdvlr0meEVoST5du8FbaVZ7Z2GF86omjD_JTklN8yXPMX169D7JXoRwjTGjFefPsxNaMs5ZjU-zsEbn0nsd0vX7F9rso-51kFE7i8IhROhR5zwCC357QNK2yENIkxUg6DqtNNiIbrWPgzSol2qnLaC9kQr6MaMtUsYNLWpllEilEPjwMnvWSRPg1XQvsquvX67OzpeXm28XZ-vLpeIFj0uaQ1V2DcY1FDnnwKhklEJdFkRixblkeZc3lDDJiqYkpWJl1eCWEQq0bCq6yN7etd0bF8QkVxB5VdQUFzXOE_F5Ioamh3Zcz0sj9l730h-Ek1rMM1bvxNbdCoKLpGrFUocPUwfvbgYIUST1FBgjLbhhHMYwxSyn47B3_6CPrzRRW2lAaNu5NFiNTcW65LggOU6_ushWj1DptNBrlQzR6RSfFXycFSQmwp-4lUMI4uLH9_9nNz_n7PsjdgfSxF1wZhj9E-ZgcQcq70Lw0D2oTLAY_Xyvhhj9LCY_p7I3xz_0UHRvYPoXee_wMw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849304902</pqid></control><display><type>article</type><title>A Harris Hawk Optimisation system for energy and resource efficient virtual machine placement in cloud data centers</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>H S, Madhusudhan ; T, Satish Kumar ; Gupta, Punit ; McArdle, Gavin</creator><contributor>Sadiq, Ali Safaa</contributor><creatorcontrib>H S, Madhusudhan ; T, Satish Kumar ; Gupta, Punit ; McArdle, Gavin ; Sadiq, Ali Safaa</creatorcontrib><description>Virtualisation is a major technology in cloud computing for optimising the cloud data centre's power usage. In the current scenario, most of the services are migrated to the cloud, putting more load on the cloud data centres. As a result, the data center's size expands resulting in increased energy usage. To address this problem, a resource allocation optimisation method that is both efficient and effective is necessary. The optimal utilisation of cloud infrastructure and optimisation algorithms plays a vital role. The cloud resources rely on the allocation policy of the virtual machine on cloud resources. A virtual machine placement technique, based on the Harris Hawk Optimisation (HHO) model for the cloud data centre is presented in this paper. The proposed HHO model aims to find the best place for virtual machines on suitable hosts with the least load and power consumption. PlanetLab's real-time workload traces are used for performance evaluation with existing PSO (Particle Swarm Optimisation) and PABFD (Best Fit Decreasing). The performance evaluation of the proposed method is done using power consumption, SLA, CPU utilisation, RAM utilisation, Execution time (ms) and the number of VM migrations. The performance evaluation is done using two simulation scenarios with scaling workload in scenario 1 and increasing resources for the virtual machine to study the performance in underloaded and overloaded conditions. Experimental results show that the proposed HHO algorithm improved execution time(ms) by 4%, had a 27% reduction in power consumption, a 16% reduction in SLA violation and an increase in resource utilisation by 17%. The HHO algorithm is also effective in handling dynamic and uncertain environments, making it suitable for real-world cloud infrastructures.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0289156</identifier><identifier>PMID: 37566590</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Bandwidths ; Biology and Life Sciences ; Climate change ; Cloud computing ; Computer and Information Sciences ; Data centers ; Earth Sciences ; Energy consumption ; Energy efficiency ; Energy usage ; Evaluation ; Heuristic ; Literature reviews ; Mathematical optimization ; Particle swarm optimization ; Performance evaluation ; Physical Sciences ; Placement ; Power consumption ; Quality of service ; Reduction ; Research and Analysis Methods ; Resource allocation ; Software ; Virtual environments ; Workload</subject><ispartof>PloS one, 2023-08, Vol.18 (8), p.e0289156-e0289156</ispartof><rights>Copyright: © 2023 H. S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 H. S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 H. S et al 2023 H. S et al</rights><rights>2023 H. S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c646t-32e87fb009e4266e53a533e9741a0c66a52f2b315a54b717c578b0d513e37b83</cites><orcidid>0000-0002-2614-2192 ; 0000-0001-7606-3014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420385/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420385/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37566590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sadiq, Ali Safaa</contributor><creatorcontrib>H S, Madhusudhan</creatorcontrib><creatorcontrib>T, Satish Kumar</creatorcontrib><creatorcontrib>Gupta, Punit</creatorcontrib><creatorcontrib>McArdle, Gavin</creatorcontrib><title>A Harris Hawk Optimisation system for energy and resource efficient virtual machine placement in cloud data centers</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Virtualisation is a major technology in cloud computing for optimising the cloud data centre's power usage. In the current scenario, most of the services are migrated to the cloud, putting more load on the cloud data centres. As a result, the data center's size expands resulting in increased energy usage. To address this problem, a resource allocation optimisation method that is both efficient and effective is necessary. The optimal utilisation of cloud infrastructure and optimisation algorithms plays a vital role. The cloud resources rely on the allocation policy of the virtual machine on cloud resources. A virtual machine placement technique, based on the Harris Hawk Optimisation (HHO) model for the cloud data centre is presented in this paper. The proposed HHO model aims to find the best place for virtual machines on suitable hosts with the least load and power consumption. PlanetLab's real-time workload traces are used for performance evaluation with existing PSO (Particle Swarm Optimisation) and PABFD (Best Fit Decreasing). The performance evaluation of the proposed method is done using power consumption, SLA, CPU utilisation, RAM utilisation, Execution time (ms) and the number of VM migrations. The performance evaluation is done using two simulation scenarios with scaling workload in scenario 1 and increasing resources for the virtual machine to study the performance in underloaded and overloaded conditions. Experimental results show that the proposed HHO algorithm improved execution time(ms) by 4%, had a 27% reduction in power consumption, a 16% reduction in SLA violation and an increase in resource utilisation by 17%. The HHO algorithm is also effective in handling dynamic and uncertain environments, making it suitable for real-world cloud infrastructures.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bandwidths</subject><subject>Biology and Life Sciences</subject><subject>Climate change</subject><subject>Cloud computing</subject><subject>Computer and Information Sciences</subject><subject>Data centers</subject><subject>Earth Sciences</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy usage</subject><subject>Evaluation</subject><subject>Heuristic</subject><subject>Literature reviews</subject><subject>Mathematical optimization</subject><subject>Particle swarm optimization</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>Placement</subject><subject>Power consumption</subject><subject>Quality of service</subject><subject>Reduction</subject><subject>Research and Analysis Methods</subject><subject>Resource allocation</subject><subject>Software</subject><subject>Virtual environments</subject><subject>Workload</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1rFDEUhgdRbF39B6IBQfRi12QyycxcyVLUFgoLWrwNmcyZ3dRMsk0y1f33Zui07EgvJBcJ5zzngzdvlr0meEVoST5du8FbaVZ7Z2GF86omjD_JTklN8yXPMX169D7JXoRwjTGjFefPsxNaMs5ZjU-zsEbn0nsd0vX7F9rso-51kFE7i8IhROhR5zwCC357QNK2yENIkxUg6DqtNNiIbrWPgzSol2qnLaC9kQr6MaMtUsYNLWpllEilEPjwMnvWSRPg1XQvsquvX67OzpeXm28XZ-vLpeIFj0uaQ1V2DcY1FDnnwKhklEJdFkRixblkeZc3lDDJiqYkpWJl1eCWEQq0bCq6yN7etd0bF8QkVxB5VdQUFzXOE_F5Ioamh3Zcz0sj9l730h-Ek1rMM1bvxNbdCoKLpGrFUocPUwfvbgYIUST1FBgjLbhhHMYwxSyn47B3_6CPrzRRW2lAaNu5NFiNTcW65LggOU6_ushWj1DptNBrlQzR6RSfFXycFSQmwp-4lUMI4uLH9_9nNz_n7PsjdgfSxF1wZhj9E-ZgcQcq70Lw0D2oTLAY_Xyvhhj9LCY_p7I3xz_0UHRvYPoXee_wMw</recordid><startdate>20230811</startdate><enddate>20230811</enddate><creator>H S, Madhusudhan</creator><creator>T, Satish Kumar</creator><creator>Gupta, Punit</creator><creator>McArdle, Gavin</creator><general>Public Library of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2614-2192</orcidid><orcidid>https://orcid.org/0000-0001-7606-3014</orcidid></search><sort><creationdate>20230811</creationdate><title>A Harris Hawk Optimisation system for energy and resource efficient virtual machine placement in cloud data centers</title><author>H S, Madhusudhan ; T, Satish Kumar ; Gupta, Punit ; McArdle, Gavin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646t-32e87fb009e4266e53a533e9741a0c66a52f2b315a54b717c578b0d513e37b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bandwidths</topic><topic>Biology and Life Sciences</topic><topic>Climate change</topic><topic>Cloud computing</topic><topic>Computer and Information Sciences</topic><topic>Data centers</topic><topic>Earth Sciences</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy usage</topic><topic>Evaluation</topic><topic>Heuristic</topic><topic>Literature reviews</topic><topic>Mathematical optimization</topic><topic>Particle swarm optimization</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>Placement</topic><topic>Power consumption</topic><topic>Quality of service</topic><topic>Reduction</topic><topic>Research and Analysis Methods</topic><topic>Resource allocation</topic><topic>Software</topic><topic>Virtual environments</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>H S, Madhusudhan</creatorcontrib><creatorcontrib>T, Satish Kumar</creatorcontrib><creatorcontrib>Gupta, Punit</creatorcontrib><creatorcontrib>McArdle, Gavin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>H S, Madhusudhan</au><au>T, Satish Kumar</au><au>Gupta, Punit</au><au>McArdle, Gavin</au><au>Sadiq, Ali Safaa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Harris Hawk Optimisation system for energy and resource efficient virtual machine placement in cloud data centers</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-08-11</date><risdate>2023</risdate><volume>18</volume><issue>8</issue><spage>e0289156</spage><epage>e0289156</epage><pages>e0289156-e0289156</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Virtualisation is a major technology in cloud computing for optimising the cloud data centre's power usage. In the current scenario, most of the services are migrated to the cloud, putting more load on the cloud data centres. As a result, the data center's size expands resulting in increased energy usage. To address this problem, a resource allocation optimisation method that is both efficient and effective is necessary. The optimal utilisation of cloud infrastructure and optimisation algorithms plays a vital role. The cloud resources rely on the allocation policy of the virtual machine on cloud resources. A virtual machine placement technique, based on the Harris Hawk Optimisation (HHO) model for the cloud data centre is presented in this paper. The proposed HHO model aims to find the best place for virtual machines on suitable hosts with the least load and power consumption. PlanetLab's real-time workload traces are used for performance evaluation with existing PSO (Particle Swarm Optimisation) and PABFD (Best Fit Decreasing). The performance evaluation of the proposed method is done using power consumption, SLA, CPU utilisation, RAM utilisation, Execution time (ms) and the number of VM migrations. The performance evaluation is done using two simulation scenarios with scaling workload in scenario 1 and increasing resources for the virtual machine to study the performance in underloaded and overloaded conditions. Experimental results show that the proposed HHO algorithm improved execution time(ms) by 4%, had a 27% reduction in power consumption, a 16% reduction in SLA violation and an increase in resource utilisation by 17%. The HHO algorithm is also effective in handling dynamic and uncertain environments, making it suitable for real-world cloud infrastructures.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37566590</pmid><doi>10.1371/journal.pone.0289156</doi><tpages>e0289156</tpages><orcidid>https://orcid.org/0000-0002-2614-2192</orcidid><orcidid>https://orcid.org/0000-0001-7606-3014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-08, Vol.18 (8), p.e0289156-e0289156
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2849304902
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Bandwidths
Biology and Life Sciences
Climate change
Cloud computing
Computer and Information Sciences
Data centers
Earth Sciences
Energy consumption
Energy efficiency
Energy usage
Evaluation
Heuristic
Literature reviews
Mathematical optimization
Particle swarm optimization
Performance evaluation
Physical Sciences
Placement
Power consumption
Quality of service
Reduction
Research and Analysis Methods
Resource allocation
Software
Virtual environments
Workload
title A Harris Hawk Optimisation system for energy and resource efficient virtual machine placement in cloud data centers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Harris%20Hawk%20Optimisation%20system%20for%20energy%20and%20resource%20efficient%20virtual%20machine%20placement%20in%20cloud%20data%20centers&rft.jtitle=PloS%20one&rft.au=H%20S,%20Madhusudhan&rft.date=2023-08-11&rft.volume=18&rft.issue=8&rft.spage=e0289156&rft.epage=e0289156&rft.pages=e0289156-e0289156&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0289156&rft_dat=%3Cgale_plos_%3EA760412019%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2849304902&rft_id=info:pmid/37566590&rft_galeid=A760412019&rfr_iscdi=true