A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) - a story of persistence, food availability and a big bang

Deep-sea macrobenthic body fossils are scarce due to the lack of deep-sea sedimentary archives in onshore settings. Therefore, hypothesized migrations of shallow shelf taxa into the deep-sea after phases of mass extinction (onshore-offshore pattern in the literature) due to anoxic events is not cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-08, Vol.18 (8), p.e0288046-e0288046
Hauptverfasser: Wiese, Frank, Schlüter, Nils, Zirkel, Jessica, Herrle, Jens O, Friedrich, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0288046
container_issue 8
container_start_page e0288046
container_title PloS one
container_volume 18
creator Wiese, Frank
Schlüter, Nils
Zirkel, Jessica
Herrle, Jens O
Friedrich, Oliver
description Deep-sea macrobenthic body fossils are scarce due to the lack of deep-sea sedimentary archives in onshore settings. Therefore, hypothesized migrations of shallow shelf taxa into the deep-sea after phases of mass extinction (onshore-offshore pattern in the literature) due to anoxic events is not constrained by the fossil record. To resolve this conundrum, we investigated 1,475 deep-sea sediment samples from the Atlantic, Pacific and Southern oceans (water depth ranging from 200 to 4,700 m), providing 41,460 spine fragments of the crown group Atelostomata (Holasteroida, Spatangoida). We show that the scarce fossil record of deep-sea echinoids is in fact a methodological artefact because it is limited by the almost exclusive use of onshore fossil archives. Our data advocate for a continuous record of deep-sea Atelostomata back to at least 104 Ma (late early Cretaceous), and literature records suggest even an older age (115 Ma). A gradual increase of different spine tip morphologies from the Albian to the Maastrichtian is observed. A subsequent, abrupt reduction in spine size and the loss of morphological inventory in the lowermost Paleogene is interpreted to be an expression of the "Lilliput Effect", related to nourishment depletion on the sea floor in the course of the Cretaceous-Paleogene (K-Pg) Boundary Event. The recovery from this event lasted at least 5 Ma, and post-K-Pg Boundary Event assemblages progress-without any further morphological breaks-towards the assemblages observed in modern deep-sea environments. Because atelostomate spine morphology is often species-specific, the variations in spine tip morphology trough time would indicate species changes taking place in the deep-sea. This observation is, therefore, interpreted to result from in-situ evolution in the deep-sea and not from onshore-offshore migrations. The calculation of the "atelostomate spine accumulation rate" (ASAR) reveals low values in pre-Campanian times, possibly related to high remineralization rates of organic matter in the water column in the course of the mid-Cretaceous Thermal Maximum and its aftermath. A Maastrichtian cooling pulse marks the irreversible onset of fluctuating but generally higher atelostomate biomass that continues throughout the Cenozoic.
doi_str_mv 10.1371/journal.pone.0288046
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2848184128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760195545</galeid><sourcerecordid>A760195545</sourcerecordid><originalsourceid>FETCH-LOGICAL-a551t-2ec48322eb696d8a407c6cd437f7fc06da34dac42bdee8cd943e259c2bb9d1a73</originalsourceid><addsrcrecordid>eNptUttqFTEUHUSxtfoHogFfKnSOuc3tqRyKWqHig_oc9iR7pik5kzGZKZz_8IPNcKallZKHJCtrrZ29WVn2ltENExX7dOPnMIDbjH7ADeV1TWX5LDtmjeB5yal4_uB8lL2K8YbSQtRl-TI7ElVRlJKK4-zvljAq8-9AAmofDPEdMYhjHhHIdkLn4-R3MAE5vfQO4oTBegNn5OeYwKH3drnYELCfHQSC-toOCYwfSU6AJHHYL54jhmiTetB4RjrvDYFbsA5a6-y0JzAkgLS2J20yfZ296MBFfLPuJ9nvL59_XVzmVz--frvYXuVQFGzKOWpZC86xLZvS1CBppUttpKi6qtO0NCCkAS15mzqqtWmkQF40mrdtYxhU4iR7f_AdU5tqHWhUvJY1qyXjdWKcr4y53aHROEwBnBqD3UHYKw9WPX4Z7LXq_a1KQ2WsKkRyOF0dgv8zY5zUzkaNzsGAfj4US7UYW4p9-I_69JdWVg8OlR06nwrrxVRtq5KypihkkVibJ1hpGdxZnSLT2YQ_EsiDQAcfY8DuvklG1RK4u8-oJXBqDVySvXs4oHvRXcLEP7ti078</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848184128</pqid></control><display><type>article</type><title>A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) - a story of persistence, food availability and a big bang</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wiese, Frank ; Schlüter, Nils ; Zirkel, Jessica ; Herrle, Jens O ; Friedrich, Oliver</creator><contributor>Carnevale, Giorgio</contributor><creatorcontrib>Wiese, Frank ; Schlüter, Nils ; Zirkel, Jessica ; Herrle, Jens O ; Friedrich, Oliver ; Carnevale, Giorgio</creatorcontrib><description>Deep-sea macrobenthic body fossils are scarce due to the lack of deep-sea sedimentary archives in onshore settings. Therefore, hypothesized migrations of shallow shelf taxa into the deep-sea after phases of mass extinction (onshore-offshore pattern in the literature) due to anoxic events is not constrained by the fossil record. To resolve this conundrum, we investigated 1,475 deep-sea sediment samples from the Atlantic, Pacific and Southern oceans (water depth ranging from 200 to 4,700 m), providing 41,460 spine fragments of the crown group Atelostomata (Holasteroida, Spatangoida). We show that the scarce fossil record of deep-sea echinoids is in fact a methodological artefact because it is limited by the almost exclusive use of onshore fossil archives. Our data advocate for a continuous record of deep-sea Atelostomata back to at least 104 Ma (late early Cretaceous), and literature records suggest even an older age (115 Ma). A gradual increase of different spine tip morphologies from the Albian to the Maastrichtian is observed. A subsequent, abrupt reduction in spine size and the loss of morphological inventory in the lowermost Paleogene is interpreted to be an expression of the "Lilliput Effect", related to nourishment depletion on the sea floor in the course of the Cretaceous-Paleogene (K-Pg) Boundary Event. The recovery from this event lasted at least 5 Ma, and post-K-Pg Boundary Event assemblages progress-without any further morphological breaks-towards the assemblages observed in modern deep-sea environments. Because atelostomate spine morphology is often species-specific, the variations in spine tip morphology trough time would indicate species changes taking place in the deep-sea. This observation is, therefore, interpreted to result from in-situ evolution in the deep-sea and not from onshore-offshore migrations. The calculation of the "atelostomate spine accumulation rate" (ASAR) reveals low values in pre-Campanian times, possibly related to high remineralization rates of organic matter in the water column in the course of the mid-Cretaceous Thermal Maximum and its aftermath. A Maastrichtian cooling pulse marks the irreversible onset of fluctuating but generally higher atelostomate biomass that continues throughout the Cenozoic.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0288046</identifier><identifier>PMID: 37556403</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Archives &amp; records ; Atelostomata ; Biological Evolution ; Biology and Life Sciences ; Biomass ; Cenozoic ; Cretaceous ; Deep sea ; Deep sea environments ; Deep sea sediments ; Earth Sciences ; Extinction, Biological ; Food availability ; Fossils ; Mass extinctions ; Morphology ; Observations ; Ocean bottom ; Ocean floor ; Oceans ; Oceans and Seas ; Offshore ; Organic matter ; Paleogene ; Remineralization ; Sediment samplers ; Sediments ; Spatangoida ; Spine ; Water ; Water circulation ; Water column ; Water depth</subject><ispartof>PloS one, 2023-08, Vol.18 (8), p.e0288046-e0288046</ispartof><rights>Copyright: © 2023 Wiese et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Wiese et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Wiese et al 2023 Wiese et al</rights><rights>2023 Wiese et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a551t-2ec48322eb696d8a407c6cd437f7fc06da34dac42bdee8cd943e259c2bb9d1a73</citedby><cites>FETCH-LOGICAL-a551t-2ec48322eb696d8a407c6cd437f7fc06da34dac42bdee8cd943e259c2bb9d1a73</cites><orcidid>0000-0002-6910-2166 ; 0000-0002-6046-7513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411753/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411753/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37556403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Carnevale, Giorgio</contributor><creatorcontrib>Wiese, Frank</creatorcontrib><creatorcontrib>Schlüter, Nils</creatorcontrib><creatorcontrib>Zirkel, Jessica</creatorcontrib><creatorcontrib>Herrle, Jens O</creatorcontrib><creatorcontrib>Friedrich, Oliver</creatorcontrib><title>A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) - a story of persistence, food availability and a big bang</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Deep-sea macrobenthic body fossils are scarce due to the lack of deep-sea sedimentary archives in onshore settings. Therefore, hypothesized migrations of shallow shelf taxa into the deep-sea after phases of mass extinction (onshore-offshore pattern in the literature) due to anoxic events is not constrained by the fossil record. To resolve this conundrum, we investigated 1,475 deep-sea sediment samples from the Atlantic, Pacific and Southern oceans (water depth ranging from 200 to 4,700 m), providing 41,460 spine fragments of the crown group Atelostomata (Holasteroida, Spatangoida). We show that the scarce fossil record of deep-sea echinoids is in fact a methodological artefact because it is limited by the almost exclusive use of onshore fossil archives. Our data advocate for a continuous record of deep-sea Atelostomata back to at least 104 Ma (late early Cretaceous), and literature records suggest even an older age (115 Ma). A gradual increase of different spine tip morphologies from the Albian to the Maastrichtian is observed. A subsequent, abrupt reduction in spine size and the loss of morphological inventory in the lowermost Paleogene is interpreted to be an expression of the "Lilliput Effect", related to nourishment depletion on the sea floor in the course of the Cretaceous-Paleogene (K-Pg) Boundary Event. The recovery from this event lasted at least 5 Ma, and post-K-Pg Boundary Event assemblages progress-without any further morphological breaks-towards the assemblages observed in modern deep-sea environments. Because atelostomate spine morphology is often species-specific, the variations in spine tip morphology trough time would indicate species changes taking place in the deep-sea. This observation is, therefore, interpreted to result from in-situ evolution in the deep-sea and not from onshore-offshore migrations. The calculation of the "atelostomate spine accumulation rate" (ASAR) reveals low values in pre-Campanian times, possibly related to high remineralization rates of organic matter in the water column in the course of the mid-Cretaceous Thermal Maximum and its aftermath. A Maastrichtian cooling pulse marks the irreversible onset of fluctuating but generally higher atelostomate biomass that continues throughout the Cenozoic.</description><subject>Analysis</subject><subject>Archives &amp; records</subject><subject>Atelostomata</subject><subject>Biological Evolution</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Cenozoic</subject><subject>Cretaceous</subject><subject>Deep sea</subject><subject>Deep sea environments</subject><subject>Deep sea sediments</subject><subject>Earth Sciences</subject><subject>Extinction, Biological</subject><subject>Food availability</subject><subject>Fossils</subject><subject>Mass extinctions</subject><subject>Morphology</subject><subject>Observations</subject><subject>Ocean bottom</subject><subject>Ocean floor</subject><subject>Oceans</subject><subject>Oceans and Seas</subject><subject>Offshore</subject><subject>Organic matter</subject><subject>Paleogene</subject><subject>Remineralization</subject><subject>Sediment samplers</subject><subject>Sediments</subject><subject>Spatangoida</subject><subject>Spine</subject><subject>Water</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Water depth</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUttqFTEUHUSxtfoHogFfKnSOuc3tqRyKWqHig_oc9iR7pik5kzGZKZz_8IPNcKallZKHJCtrrZ29WVn2ltENExX7dOPnMIDbjH7ADeV1TWX5LDtmjeB5yal4_uB8lL2K8YbSQtRl-TI7ElVRlJKK4-zvljAq8-9AAmofDPEdMYhjHhHIdkLn4-R3MAE5vfQO4oTBegNn5OeYwKH3drnYELCfHQSC-toOCYwfSU6AJHHYL54jhmiTetB4RjrvDYFbsA5a6-y0JzAkgLS2J20yfZ296MBFfLPuJ9nvL59_XVzmVz--frvYXuVQFGzKOWpZC86xLZvS1CBppUttpKi6qtO0NCCkAS15mzqqtWmkQF40mrdtYxhU4iR7f_AdU5tqHWhUvJY1qyXjdWKcr4y53aHROEwBnBqD3UHYKw9WPX4Z7LXq_a1KQ2WsKkRyOF0dgv8zY5zUzkaNzsGAfj4US7UYW4p9-I_69JdWVg8OlR06nwrrxVRtq5KypihkkVibJ1hpGdxZnSLT2YQ_EsiDQAcfY8DuvklG1RK4u8-oJXBqDVySvXs4oHvRXcLEP7ti078</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Wiese, Frank</creator><creator>Schlüter, Nils</creator><creator>Zirkel, Jessica</creator><creator>Herrle, Jens O</creator><creator>Friedrich, Oliver</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6910-2166</orcidid><orcidid>https://orcid.org/0000-0002-6046-7513</orcidid></search><sort><creationdate>20230809</creationdate><title>A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) - a story of persistence, food availability and a big bang</title><author>Wiese, Frank ; Schlüter, Nils ; Zirkel, Jessica ; Herrle, Jens O ; Friedrich, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a551t-2ec48322eb696d8a407c6cd437f7fc06da34dac42bdee8cd943e259c2bb9d1a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Archives &amp; records</topic><topic>Atelostomata</topic><topic>Biological Evolution</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Cenozoic</topic><topic>Cretaceous</topic><topic>Deep sea</topic><topic>Deep sea environments</topic><topic>Deep sea sediments</topic><topic>Earth Sciences</topic><topic>Extinction, Biological</topic><topic>Food availability</topic><topic>Fossils</topic><topic>Mass extinctions</topic><topic>Morphology</topic><topic>Observations</topic><topic>Ocean bottom</topic><topic>Ocean floor</topic><topic>Oceans</topic><topic>Oceans and Seas</topic><topic>Offshore</topic><topic>Organic matter</topic><topic>Paleogene</topic><topic>Remineralization</topic><topic>Sediment samplers</topic><topic>Sediments</topic><topic>Spatangoida</topic><topic>Spine</topic><topic>Water</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiese, Frank</creatorcontrib><creatorcontrib>Schlüter, Nils</creatorcontrib><creatorcontrib>Zirkel, Jessica</creatorcontrib><creatorcontrib>Herrle, Jens O</creatorcontrib><creatorcontrib>Friedrich, Oliver</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiese, Frank</au><au>Schlüter, Nils</au><au>Zirkel, Jessica</au><au>Herrle, Jens O</au><au>Friedrich, Oliver</au><au>Carnevale, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) - a story of persistence, food availability and a big bang</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>18</volume><issue>8</issue><spage>e0288046</spage><epage>e0288046</epage><pages>e0288046-e0288046</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Deep-sea macrobenthic body fossils are scarce due to the lack of deep-sea sedimentary archives in onshore settings. Therefore, hypothesized migrations of shallow shelf taxa into the deep-sea after phases of mass extinction (onshore-offshore pattern in the literature) due to anoxic events is not constrained by the fossil record. To resolve this conundrum, we investigated 1,475 deep-sea sediment samples from the Atlantic, Pacific and Southern oceans (water depth ranging from 200 to 4,700 m), providing 41,460 spine fragments of the crown group Atelostomata (Holasteroida, Spatangoida). We show that the scarce fossil record of deep-sea echinoids is in fact a methodological artefact because it is limited by the almost exclusive use of onshore fossil archives. Our data advocate for a continuous record of deep-sea Atelostomata back to at least 104 Ma (late early Cretaceous), and literature records suggest even an older age (115 Ma). A gradual increase of different spine tip morphologies from the Albian to the Maastrichtian is observed. A subsequent, abrupt reduction in spine size and the loss of morphological inventory in the lowermost Paleogene is interpreted to be an expression of the "Lilliput Effect", related to nourishment depletion on the sea floor in the course of the Cretaceous-Paleogene (K-Pg) Boundary Event. The recovery from this event lasted at least 5 Ma, and post-K-Pg Boundary Event assemblages progress-without any further morphological breaks-towards the assemblages observed in modern deep-sea environments. Because atelostomate spine morphology is often species-specific, the variations in spine tip morphology trough time would indicate species changes taking place in the deep-sea. This observation is, therefore, interpreted to result from in-situ evolution in the deep-sea and not from onshore-offshore migrations. The calculation of the "atelostomate spine accumulation rate" (ASAR) reveals low values in pre-Campanian times, possibly related to high remineralization rates of organic matter in the water column in the course of the mid-Cretaceous Thermal Maximum and its aftermath. A Maastrichtian cooling pulse marks the irreversible onset of fluctuating but generally higher atelostomate biomass that continues throughout the Cenozoic.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37556403</pmid><doi>10.1371/journal.pone.0288046</doi><orcidid>https://orcid.org/0000-0002-6910-2166</orcidid><orcidid>https://orcid.org/0000-0002-6046-7513</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-08, Vol.18 (8), p.e0288046-e0288046
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2848184128
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Archives & records
Atelostomata
Biological Evolution
Biology and Life Sciences
Biomass
Cenozoic
Cretaceous
Deep sea
Deep sea environments
Deep sea sediments
Earth Sciences
Extinction, Biological
Food availability
Fossils
Mass extinctions
Morphology
Observations
Ocean bottom
Ocean floor
Oceans
Oceans and Seas
Offshore
Organic matter
Paleogene
Remineralization
Sediment samplers
Sediments
Spatangoida
Spine
Water
Water circulation
Water column
Water depth
title A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) - a story of persistence, food availability and a big bang
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20104-Ma%20record%20of%20deep-sea%20Atelostomata%20(Holasterioda,%20Spatangoida,%20irregular%20echinoids)%20-%20a%20story%20of%20persistence,%20food%20availability%20and%20a%20big%20bang&rft.jtitle=PloS%20one&rft.au=Wiese,%20Frank&rft.date=2023-08-09&rft.volume=18&rft.issue=8&rft.spage=e0288046&rft.epage=e0288046&rft.pages=e0288046-e0288046&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0288046&rft_dat=%3Cgale_plos_%3EA760195545%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848184128&rft_id=info:pmid/37556403&rft_galeid=A760195545&rfr_iscdi=true