Adding mechanical vibration to a half squat with different ballasts and rhythms increases movement variability

The aim of this study was to determine whether whole body vibration increases movement variability while performing a half squat with different ballasts and rhythms through entropy. A total of 12 male athletes (age: 21.24 ± 2.35 years, height: 176.83 ± 5.80 cm, body mass: 70.63 ± 8.58 kg) performed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-07, Vol.18 (7), p.e0284863-e0284863
Hauptverfasser: Tuyà Viñas, Sílvia, Fernández-Valdés Villa, Bruno, Pérez-Chirinos Buxadé, Carla, Morral-Yepes, Mónica, Del Campo Montoliu, Lucas, Moras Feliu, Gerard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0284863
container_issue 7
container_start_page e0284863
container_title PloS one
container_volume 18
creator Tuyà Viñas, Sílvia
Fernández-Valdés Villa, Bruno
Pérez-Chirinos Buxadé, Carla
Morral-Yepes, Mónica
Del Campo Montoliu, Lucas
Moras Feliu, Gerard
description The aim of this study was to determine whether whole body vibration increases movement variability while performing a half squat with different ballasts and rhythms through entropy. A total of 12 male athletes (age: 21.24 ± 2.35 years, height: 176.83 ± 5.80 cm, body mass: 70.63 ± 8.58 kg) performed a half squat with weighted vest, dumbbells and bar with weights suspended with elastic bands, with and without vibration at the squat rhythm of 40 and 60 bpm. Each ballast corresponded to 15% of the body mass. The movement variability was analysed by calculating the sample entropy of the acceleration signal, recorded at the waist using an accelerometer. With vibration, differences were found between weighted vest and dumbbells (t(121) = -8.81, p < 0.001 at 40 bpm; t(121) = -8.18, p < 0.001 at 60 bpm) and between weighted vest and bar at both rhythms (t(121) = -8.96, p < 0.001 at 40 bpm; t(121) = -8.83, p < 0.001 at 60 bpm). Furthermore, a higher sample entropy was obtained at 40 bpm with all ballasts (t(121) = 5.65, p < 0.001 with weighted vest; t(121) = 6.27, p < 0.001 with dumbbells; t(121) = 5.78, p < 0.001 with bar). No differences were found without vibration. These findings reveal that adding mechanical vibration to a half squat produces a non-proportional increase in movement variability, being larger when the ballast is placed on the upper limbs and when performed at a slow rhythm.
doi_str_mv 10.1371/journal.pone.0284863
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2842935474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758636392</galeid><sourcerecordid>A758636392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697t-30bcf20c9810049cf2d42abfe245f9e20e95aa0c8e842a0cfce50745dbe344403</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdRbK1-A9GAIPqwa2aSuT2VpXgpFAreXsOZzMlOSiZpk8zqfnuzdlp2pQ-Sh4ST37nwP_8se5nTZc7q_MOVm7wFs7x2Fpe0aHhTsUfZcd6yYlEVlD3eex9lz0K4orRkTVU9zY5YzdumaehxZld9r-2ajCgHsFqCIRvdeYjaWRIdATKAUSTcTBDJLx0H0mul0KONpANjIMRAwPbED9s4jIFoKz1CwEBGt8Fxx23Aa-i00XH7PHuiwAR8Md8n2Y9PH7-ffVlcXH4-P1tdLGTV1nHBaCdVQWXb5JTyNr17XkCnsOClarGg2JYAVDbYpDiVSmJJa172HTLOOWUn2evbutfGBTFLFURSqWhZyWueiNOZmLoRe5kG9WDEtdcj-K1woMXhj9WDWLuNyGlSj9ZlqvBuruDdzYQhilEHiUkTi27624zTti7KKqFv_kEfHmmm1mBQaKtcaix3RcWqLtN6K9YWiVo-QKXT46hlMoPSKX6Q8P4gITERf8c1TCGI829f_5-9_HnIvt1jBwQTh-DMtLNOOAT5LSi9C8Gjulc5p2Ln5Ts1xM7LYvZySnu1v6H7pDvzsj8qNPDq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842935474</pqid></control><display><type>article</type><title>Adding mechanical vibration to a half squat with different ballasts and rhythms increases movement variability</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tuyà Viñas, Sílvia ; Fernández-Valdés Villa, Bruno ; Pérez-Chirinos Buxadé, Carla ; Morral-Yepes, Mónica ; Del Campo Montoliu, Lucas ; Moras Feliu, Gerard</creator><contributor>Cè, Emiliano</contributor><creatorcontrib>Tuyà Viñas, Sílvia ; Fernández-Valdés Villa, Bruno ; Pérez-Chirinos Buxadé, Carla ; Morral-Yepes, Mónica ; Del Campo Montoliu, Lucas ; Moras Feliu, Gerard ; Cè, Emiliano</creatorcontrib><description><![CDATA[The aim of this study was to determine whether whole body vibration increases movement variability while performing a half squat with different ballasts and rhythms through entropy. A total of 12 male athletes (age: 21.24 ± 2.35 years, height: 176.83 ± 5.80 cm, body mass: 70.63 ± 8.58 kg) performed a half squat with weighted vest, dumbbells and bar with weights suspended with elastic bands, with and without vibration at the squat rhythm of 40 and 60 bpm. Each ballast corresponded to 15% of the body mass. The movement variability was analysed by calculating the sample entropy of the acceleration signal, recorded at the waist using an accelerometer. With vibration, differences were found between weighted vest and dumbbells (t(121) = -8.81, p < 0.001 at 40 bpm; t(121) = -8.18, p < 0.001 at 60 bpm) and between weighted vest and bar at both rhythms (t(121) = -8.96, p < 0.001 at 40 bpm; t(121) = -8.83, p < 0.001 at 60 bpm). Furthermore, a higher sample entropy was obtained at 40 bpm with all ballasts (t(121) = 5.65, p < 0.001 with weighted vest; t(121) = 6.27, p < 0.001 with dumbbells; t(121) = 5.78, p < 0.001 with bar). No differences were found without vibration. These findings reveal that adding mechanical vibration to a half squat produces a non-proportional increase in movement variability, being larger when the ballast is placed on the upper limbs and when performed at a slow rhythm.]]></description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0284863</identifier><identifier>PMID: 37498880</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accelerometers ; Athletes ; Biology and Life Sciences ; Body mass ; Data collection ; Electromyography ; Engineering and Technology ; Entropy ; Evaluation ; Exercise ; Medicine and Health Sciences ; Methods ; Physical Sciences ; Physiological aspects ; Research and Analysis Methods ; Rhythm ; Social Sciences ; Sports training ; Strength training ; Time series ; Training ; Variability ; Vibration ; Weight training</subject><ispartof>PloS one, 2023-07, Vol.18 (7), p.e0284863-e0284863</ispartof><rights>Copyright: © 2023 Tuyà Viñas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Tuyà Viñas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Tuyà Viñas et al 2023 Tuyà Viñas et al</rights><rights>2023 Tuyà Viñas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c697t-30bcf20c9810049cf2d42abfe245f9e20e95aa0c8e842a0cfce50745dbe344403</citedby><cites>FETCH-LOGICAL-c697t-30bcf20c9810049cf2d42abfe245f9e20e95aa0c8e842a0cfce50745dbe344403</cites><orcidid>0000-0001-5566-3627 ; 0000-0003-3232-1178 ; 0000-0001-5159-7925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374075/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374075/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37498880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cè, Emiliano</contributor><creatorcontrib>Tuyà Viñas, Sílvia</creatorcontrib><creatorcontrib>Fernández-Valdés Villa, Bruno</creatorcontrib><creatorcontrib>Pérez-Chirinos Buxadé, Carla</creatorcontrib><creatorcontrib>Morral-Yepes, Mónica</creatorcontrib><creatorcontrib>Del Campo Montoliu, Lucas</creatorcontrib><creatorcontrib>Moras Feliu, Gerard</creatorcontrib><title>Adding mechanical vibration to a half squat with different ballasts and rhythms increases movement variability</title><title>PloS one</title><addtitle>PLoS One</addtitle><description><![CDATA[The aim of this study was to determine whether whole body vibration increases movement variability while performing a half squat with different ballasts and rhythms through entropy. A total of 12 male athletes (age: 21.24 ± 2.35 years, height: 176.83 ± 5.80 cm, body mass: 70.63 ± 8.58 kg) performed a half squat with weighted vest, dumbbells and bar with weights suspended with elastic bands, with and without vibration at the squat rhythm of 40 and 60 bpm. Each ballast corresponded to 15% of the body mass. The movement variability was analysed by calculating the sample entropy of the acceleration signal, recorded at the waist using an accelerometer. With vibration, differences were found between weighted vest and dumbbells (t(121) = -8.81, p < 0.001 at 40 bpm; t(121) = -8.18, p < 0.001 at 60 bpm) and between weighted vest and bar at both rhythms (t(121) = -8.96, p < 0.001 at 40 bpm; t(121) = -8.83, p < 0.001 at 60 bpm). Furthermore, a higher sample entropy was obtained at 40 bpm with all ballasts (t(121) = 5.65, p < 0.001 with weighted vest; t(121) = 6.27, p < 0.001 with dumbbells; t(121) = 5.78, p < 0.001 with bar). No differences were found without vibration. These findings reveal that adding mechanical vibration to a half squat produces a non-proportional increase in movement variability, being larger when the ballast is placed on the upper limbs and when performed at a slow rhythm.]]></description><subject>Accelerometers</subject><subject>Athletes</subject><subject>Biology and Life Sciences</subject><subject>Body mass</subject><subject>Data collection</subject><subject>Electromyography</subject><subject>Engineering and Technology</subject><subject>Entropy</subject><subject>Evaluation</subject><subject>Exercise</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Research and Analysis Methods</subject><subject>Rhythm</subject><subject>Social Sciences</subject><subject>Sports training</subject><subject>Strength training</subject><subject>Time series</subject><subject>Training</subject><subject>Variability</subject><subject>Vibration</subject><subject>Weight training</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkltrFDEUxwdRbK1-A9GAIPqwa2aSuT2VpXgpFAreXsOZzMlOSiZpk8zqfnuzdlp2pQ-Sh4ST37nwP_8se5nTZc7q_MOVm7wFs7x2Fpe0aHhTsUfZcd6yYlEVlD3eex9lz0K4orRkTVU9zY5YzdumaehxZld9r-2ajCgHsFqCIRvdeYjaWRIdATKAUSTcTBDJLx0H0mul0KONpANjIMRAwPbED9s4jIFoKz1CwEBGt8Fxx23Aa-i00XH7PHuiwAR8Md8n2Y9PH7-ffVlcXH4-P1tdLGTV1nHBaCdVQWXb5JTyNr17XkCnsOClarGg2JYAVDbYpDiVSmJJa172HTLOOWUn2evbutfGBTFLFURSqWhZyWueiNOZmLoRe5kG9WDEtdcj-K1woMXhj9WDWLuNyGlSj9ZlqvBuruDdzYQhilEHiUkTi27624zTti7KKqFv_kEfHmmm1mBQaKtcaix3RcWqLtN6K9YWiVo-QKXT46hlMoPSKX6Q8P4gITERf8c1TCGI829f_5-9_HnIvt1jBwQTh-DMtLNOOAT5LSi9C8Gjulc5p2Ln5Ts1xM7LYvZySnu1v6H7pDvzsj8qNPDq</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Tuyà Viñas, Sílvia</creator><creator>Fernández-Valdés Villa, Bruno</creator><creator>Pérez-Chirinos Buxadé, Carla</creator><creator>Morral-Yepes, Mónica</creator><creator>Del Campo Montoliu, Lucas</creator><creator>Moras Feliu, Gerard</creator><general>Public Library of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5566-3627</orcidid><orcidid>https://orcid.org/0000-0003-3232-1178</orcidid><orcidid>https://orcid.org/0000-0001-5159-7925</orcidid></search><sort><creationdate>20230727</creationdate><title>Adding mechanical vibration to a half squat with different ballasts and rhythms increases movement variability</title><author>Tuyà Viñas, Sílvia ; Fernández-Valdés Villa, Bruno ; Pérez-Chirinos Buxadé, Carla ; Morral-Yepes, Mónica ; Del Campo Montoliu, Lucas ; Moras Feliu, Gerard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697t-30bcf20c9810049cf2d42abfe245f9e20e95aa0c8e842a0cfce50745dbe344403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>Athletes</topic><topic>Biology and Life Sciences</topic><topic>Body mass</topic><topic>Data collection</topic><topic>Electromyography</topic><topic>Engineering and Technology</topic><topic>Entropy</topic><topic>Evaluation</topic><topic>Exercise</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Research and Analysis Methods</topic><topic>Rhythm</topic><topic>Social Sciences</topic><topic>Sports training</topic><topic>Strength training</topic><topic>Time series</topic><topic>Training</topic><topic>Variability</topic><topic>Vibration</topic><topic>Weight training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuyà Viñas, Sílvia</creatorcontrib><creatorcontrib>Fernández-Valdés Villa, Bruno</creatorcontrib><creatorcontrib>Pérez-Chirinos Buxadé, Carla</creatorcontrib><creatorcontrib>Morral-Yepes, Mónica</creatorcontrib><creatorcontrib>Del Campo Montoliu, Lucas</creatorcontrib><creatorcontrib>Moras Feliu, Gerard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuyà Viñas, Sílvia</au><au>Fernández-Valdés Villa, Bruno</au><au>Pérez-Chirinos Buxadé, Carla</au><au>Morral-Yepes, Mónica</au><au>Del Campo Montoliu, Lucas</au><au>Moras Feliu, Gerard</au><au>Cè, Emiliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adding mechanical vibration to a half squat with different ballasts and rhythms increases movement variability</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-07-27</date><risdate>2023</risdate><volume>18</volume><issue>7</issue><spage>e0284863</spage><epage>e0284863</epage><pages>e0284863-e0284863</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract><![CDATA[The aim of this study was to determine whether whole body vibration increases movement variability while performing a half squat with different ballasts and rhythms through entropy. A total of 12 male athletes (age: 21.24 ± 2.35 years, height: 176.83 ± 5.80 cm, body mass: 70.63 ± 8.58 kg) performed a half squat with weighted vest, dumbbells and bar with weights suspended with elastic bands, with and without vibration at the squat rhythm of 40 and 60 bpm. Each ballast corresponded to 15% of the body mass. The movement variability was analysed by calculating the sample entropy of the acceleration signal, recorded at the waist using an accelerometer. With vibration, differences were found between weighted vest and dumbbells (t(121) = -8.81, p < 0.001 at 40 bpm; t(121) = -8.18, p < 0.001 at 60 bpm) and between weighted vest and bar at both rhythms (t(121) = -8.96, p < 0.001 at 40 bpm; t(121) = -8.83, p < 0.001 at 60 bpm). Furthermore, a higher sample entropy was obtained at 40 bpm with all ballasts (t(121) = 5.65, p < 0.001 with weighted vest; t(121) = 6.27, p < 0.001 with dumbbells; t(121) = 5.78, p < 0.001 with bar). No differences were found without vibration. These findings reveal that adding mechanical vibration to a half squat produces a non-proportional increase in movement variability, being larger when the ballast is placed on the upper limbs and when performed at a slow rhythm.]]></abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37498880</pmid><doi>10.1371/journal.pone.0284863</doi><tpages>e0284863</tpages><orcidid>https://orcid.org/0000-0001-5566-3627</orcidid><orcidid>https://orcid.org/0000-0003-3232-1178</orcidid><orcidid>https://orcid.org/0000-0001-5159-7925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-07, Vol.18 (7), p.e0284863-e0284863
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2842935474
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accelerometers
Athletes
Biology and Life Sciences
Body mass
Data collection
Electromyography
Engineering and Technology
Entropy
Evaluation
Exercise
Medicine and Health Sciences
Methods
Physical Sciences
Physiological aspects
Research and Analysis Methods
Rhythm
Social Sciences
Sports training
Strength training
Time series
Training
Variability
Vibration
Weight training
title Adding mechanical vibration to a half squat with different ballasts and rhythms increases movement variability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adding%20mechanical%20vibration%20to%20a%20half%20squat%20with%20different%20ballasts%20and%20rhythms%20increases%20movement%20variability&rft.jtitle=PloS%20one&rft.au=Tuy%C3%A0%20Vi%C3%B1as,%20S%C3%ADlvia&rft.date=2023-07-27&rft.volume=18&rft.issue=7&rft.spage=e0284863&rft.epage=e0284863&rft.pages=e0284863-e0284863&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0284863&rft_dat=%3Cgale_plos_%3EA758636392%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842935474&rft_id=info:pmid/37498880&rft_galeid=A758636392&rfr_iscdi=true