Protein embeddings improve phage-host interaction prediction

With the growing interest in using phages to combat antimicrobial resistance, computational methods for predicting phage-host interactions have been explored to help shortlist candidate phages. Most existing models consider entire proteomes and rely on manual feature engineering, which poses difficu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-07, Vol.18 (7), p.e0289030
Hauptverfasser: Gonzales, Mark Edward M, Ureta, Jennifer C, Shrestha, Anish M S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e0289030
container_title PloS one
container_volume 18
creator Gonzales, Mark Edward M
Ureta, Jennifer C
Shrestha, Anish M S
description With the growing interest in using phages to combat antimicrobial resistance, computational methods for predicting phage-host interactions have been explored to help shortlist candidate phages. Most existing models consider entire proteomes and rely on manual feature engineering, which poses difficulty in selecting the most informative sequence properties to serve as input to the model. In this paper, we framed phage-host interaction prediction as a multiclass classification problem that takes as input the embeddings of a phage's receptor-binding proteins, which are known to be the key machinery for host recognition, and predicts the host genus. We explored different protein language models to automatically encode these protein sequences into dense embeddings without the need for additional alignment or structural information. We show that the use of embeddings of receptor-binding proteins presents improvements over handcrafted genomic and protein sequence features. The highest performance was obtained using the transformer-based protein language model ProtT5, resulting in a 3% to 4% increase in weighted F1 and recall scores across different prediction confidence thresholds, compared to using selected handcrafted sequence features.
doi_str_mv 10.1371/journal.pone.0289030
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2841365577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758303154</galeid><sourcerecordid>A758303154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-4c0d01148f9fb64f9dd2cb828812cb3fffb935eed35d24f066b900b9f422dd653</originalsourceid><addsrcrecordid>eNqNkl1r1jAUx4sobk6_gWhBEL3oY17aNAVBxvBlMJj4dhvS5qTNaJOatEO_valPN57KLiQXJyS_8z_JOf8keYrRDtMSv7lys7ey343Owg4RXiGK7iXHuKIkYwTR-wf7o-RRCFcIFZQz9jA5omXOWYWL4-TtZ-8mMDaFoQaljG1DaobRu2tIx062kHUuTKmxE3jZTMbZdPSgzN_t4-SBln2AJ2s8Sb5_eP_t7FN2cfnx_Oz0ImsYKacsb5BCGOdcV7pmua6UIk3NCec4Rqq1ritaAChaKJJrxFhdIVRXOidEKVbQk-T5XnfsXRDrx4MgPMeUFUVZRuLdSsz1AKoBO3nZi9GbQfrfwkkjtjfWdKJ11wKjqEDxovBqVfDu5wxhEoMJDfS9tODmfTFeVhSTiL74B737SSvVyh6EsdrFws0iKk7LglNEcZFHancHFZeCwTRxtNrE803C601CZCb4NbVyDkGcf_3y_-zljy378oDtQPZTF1w_L3MOWzDfg413IXjQt13GSCzOvOmGWJwpVmfGtGeHE7pNurEi_QPOy94Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841365577</pqid></control><display><type>article</type><title>Protein embeddings improve phage-host interaction prediction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gonzales, Mark Edward M ; Ureta, Jennifer C ; Shrestha, Anish M S</creator><contributor>Karunasagar, Iddya</contributor><creatorcontrib>Gonzales, Mark Edward M ; Ureta, Jennifer C ; Shrestha, Anish M S ; Karunasagar, Iddya</creatorcontrib><description>With the growing interest in using phages to combat antimicrobial resistance, computational methods for predicting phage-host interactions have been explored to help shortlist candidate phages. Most existing models consider entire proteomes and rely on manual feature engineering, which poses difficulty in selecting the most informative sequence properties to serve as input to the model. In this paper, we framed phage-host interaction prediction as a multiclass classification problem that takes as input the embeddings of a phage's receptor-binding proteins, which are known to be the key machinery for host recognition, and predicts the host genus. We explored different protein language models to automatically encode these protein sequences into dense embeddings without the need for additional alignment or structural information. We show that the use of embeddings of receptor-binding proteins presents improvements over handcrafted genomic and protein sequence features. The highest performance was obtained using the transformer-based protein language model ProtT5, resulting in a 3% to 4% increase in weighted F1 and recall scores across different prediction confidence thresholds, compared to using selected handcrafted sequence features.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0289030</identifier><identifier>PMID: 37486915</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Amino acids ; Analysis ; Annotations ; Antimicrobial resistance ; Bacteriophages ; Binding ; Binding proteins ; Bioinformatics ; Biology and Life Sciences ; Causes of ; Computer and Information Sciences ; Data collection ; Differential Threshold ; Drug resistance in microorganisms ; Engineering and Technology ; Genomes ; Language ; Medicine and Health Sciences ; Mental Recall ; Modelling ; Phages ; Predictions ; Protein binding ; Proteins ; Proteome ; Proteomes ; Receptors ; Social Sciences</subject><ispartof>PloS one, 2023-07, Vol.18 (7), p.e0289030</ispartof><rights>Copyright: © 2023 Gonzales et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Gonzales et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Gonzales et al 2023 Gonzales et al</rights><rights>2023 Gonzales et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-4c0d01148f9fb64f9dd2cb828812cb3fffb935eed35d24f066b900b9f422dd653</citedby><cites>FETCH-LOGICAL-c627t-4c0d01148f9fb64f9dd2cb828812cb3fffb935eed35d24f066b900b9f422dd653</cites><orcidid>0000-0002-9192-9709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365317/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365317/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37486915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Karunasagar, Iddya</contributor><creatorcontrib>Gonzales, Mark Edward M</creatorcontrib><creatorcontrib>Ureta, Jennifer C</creatorcontrib><creatorcontrib>Shrestha, Anish M S</creatorcontrib><title>Protein embeddings improve phage-host interaction prediction</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With the growing interest in using phages to combat antimicrobial resistance, computational methods for predicting phage-host interactions have been explored to help shortlist candidate phages. Most existing models consider entire proteomes and rely on manual feature engineering, which poses difficulty in selecting the most informative sequence properties to serve as input to the model. In this paper, we framed phage-host interaction prediction as a multiclass classification problem that takes as input the embeddings of a phage's receptor-binding proteins, which are known to be the key machinery for host recognition, and predicts the host genus. We explored different protein language models to automatically encode these protein sequences into dense embeddings without the need for additional alignment or structural information. We show that the use of embeddings of receptor-binding proteins presents improvements over handcrafted genomic and protein sequence features. The highest performance was obtained using the transformer-based protein language model ProtT5, resulting in a 3% to 4% increase in weighted F1 and recall scores across different prediction confidence thresholds, compared to using selected handcrafted sequence features.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Annotations</subject><subject>Antimicrobial resistance</subject><subject>Bacteriophages</subject><subject>Binding</subject><subject>Binding proteins</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Causes of</subject><subject>Computer and Information Sciences</subject><subject>Data collection</subject><subject>Differential Threshold</subject><subject>Drug resistance in microorganisms</subject><subject>Engineering and Technology</subject><subject>Genomes</subject><subject>Language</subject><subject>Medicine and Health Sciences</subject><subject>Mental Recall</subject><subject>Modelling</subject><subject>Phages</subject><subject>Predictions</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Proteome</subject><subject>Proteomes</subject><subject>Receptors</subject><subject>Social Sciences</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1r1jAUx4sobk6_gWhBEL3oY17aNAVBxvBlMJj4dhvS5qTNaJOatEO_valPN57KLiQXJyS_8z_JOf8keYrRDtMSv7lys7ey343Owg4RXiGK7iXHuKIkYwTR-wf7o-RRCFcIFZQz9jA5omXOWYWL4-TtZ-8mMDaFoQaljG1DaobRu2tIx062kHUuTKmxE3jZTMbZdPSgzN_t4-SBln2AJ2s8Sb5_eP_t7FN2cfnx_Oz0ImsYKacsb5BCGOdcV7pmua6UIk3NCec4Rqq1ritaAChaKJJrxFhdIVRXOidEKVbQk-T5XnfsXRDrx4MgPMeUFUVZRuLdSsz1AKoBO3nZi9GbQfrfwkkjtjfWdKJ11wKjqEDxovBqVfDu5wxhEoMJDfS9tODmfTFeVhSTiL74B737SSvVyh6EsdrFws0iKk7LglNEcZFHancHFZeCwTRxtNrE803C601CZCb4NbVyDkGcf_3y_-zljy378oDtQPZTF1w_L3MOWzDfg413IXjQt13GSCzOvOmGWJwpVmfGtGeHE7pNurEi_QPOy94Q</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>Gonzales, Mark Edward M</creator><creator>Ureta, Jennifer C</creator><creator>Shrestha, Anish M S</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9192-9709</orcidid></search><sort><creationdate>20230724</creationdate><title>Protein embeddings improve phage-host interaction prediction</title><author>Gonzales, Mark Edward M ; Ureta, Jennifer C ; Shrestha, Anish M S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-4c0d01148f9fb64f9dd2cb828812cb3fffb935eed35d24f066b900b9f422dd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Annotations</topic><topic>Antimicrobial resistance</topic><topic>Bacteriophages</topic><topic>Binding</topic><topic>Binding proteins</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Causes of</topic><topic>Computer and Information Sciences</topic><topic>Data collection</topic><topic>Differential Threshold</topic><topic>Drug resistance in microorganisms</topic><topic>Engineering and Technology</topic><topic>Genomes</topic><topic>Language</topic><topic>Medicine and Health Sciences</topic><topic>Mental Recall</topic><topic>Modelling</topic><topic>Phages</topic><topic>Predictions</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Proteome</topic><topic>Proteomes</topic><topic>Receptors</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzales, Mark Edward M</creatorcontrib><creatorcontrib>Ureta, Jennifer C</creatorcontrib><creatorcontrib>Shrestha, Anish M S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzales, Mark Edward M</au><au>Ureta, Jennifer C</au><au>Shrestha, Anish M S</au><au>Karunasagar, Iddya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein embeddings improve phage-host interaction prediction</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-07-24</date><risdate>2023</risdate><volume>18</volume><issue>7</issue><spage>e0289030</spage><pages>e0289030-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With the growing interest in using phages to combat antimicrobial resistance, computational methods for predicting phage-host interactions have been explored to help shortlist candidate phages. Most existing models consider entire proteomes and rely on manual feature engineering, which poses difficulty in selecting the most informative sequence properties to serve as input to the model. In this paper, we framed phage-host interaction prediction as a multiclass classification problem that takes as input the embeddings of a phage's receptor-binding proteins, which are known to be the key machinery for host recognition, and predicts the host genus. We explored different protein language models to automatically encode these protein sequences into dense embeddings without the need for additional alignment or structural information. We show that the use of embeddings of receptor-binding proteins presents improvements over handcrafted genomic and protein sequence features. The highest performance was obtained using the transformer-based protein language model ProtT5, resulting in a 3% to 4% increase in weighted F1 and recall scores across different prediction confidence thresholds, compared to using selected handcrafted sequence features.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37486915</pmid><doi>10.1371/journal.pone.0289030</doi><tpages>e0289030</tpages><orcidid>https://orcid.org/0000-0002-9192-9709</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-07, Vol.18 (7), p.e0289030
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2841365577
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Amino acids
Analysis
Annotations
Antimicrobial resistance
Bacteriophages
Binding
Binding proteins
Bioinformatics
Biology and Life Sciences
Causes of
Computer and Information Sciences
Data collection
Differential Threshold
Drug resistance in microorganisms
Engineering and Technology
Genomes
Language
Medicine and Health Sciences
Mental Recall
Modelling
Phages
Predictions
Protein binding
Proteins
Proteome
Proteomes
Receptors
Social Sciences
title Protein embeddings improve phage-host interaction prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20embeddings%20improve%20phage-host%20interaction%20prediction&rft.jtitle=PloS%20one&rft.au=Gonzales,%20Mark%20Edward%20M&rft.date=2023-07-24&rft.volume=18&rft.issue=7&rft.spage=e0289030&rft.pages=e0289030-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0289030&rft_dat=%3Cgale_plos_%3EA758303154%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841365577&rft_id=info:pmid/37486915&rft_galeid=A758303154&rfr_iscdi=true