Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens
Auxin response factors (ARFs) are a family of transcription factors that are responsible for regulating gene expression in response to changes in auxin level. The analysis of ARF sequence and activity indicates that there are 2 major groups: activators and repressors. One clade of ARFs, clade-D, is...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2023-06, Vol.21 (6), p.e3002163-e3002163 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3002163 |
---|---|
container_issue | 6 |
container_start_page | e3002163 |
container_title | PLoS biology |
container_volume | 21 |
creator | Bascom, Jr, Carlisle Prigge, Michael J Szutu, Whitnie Bantle, Alexis Irmak, Sophie Tu, Daniella Estelle, Mark |
description | Auxin response factors (ARFs) are a family of transcription factors that are responsible for regulating gene expression in response to changes in auxin level. The analysis of ARF sequence and activity indicates that there are 2 major groups: activators and repressors. One clade of ARFs, clade-D, is sister to clade-A activating ARFs, but are unique in that they lack a DNA-binding domain. Clade-D ARFs are present in lycophytes and bryophytes but absent in other plant lineages. The transcriptional activity of clade-D ARFs, as well as how they regulate gene expression, is not well understood. Here, we report that clade-D ARFs are transcriptional activators in the model bryophyte Physcomitrium patens and have a major role in the development of this species. Δarfddub protonemata exhibit a delay in filament branching, as well as a delay in the chloronema to caulonema transition. Additionally, leafy gametophore development in Δarfddub lines lags behind wild type. We present evidence that ARFd1 interacts with activating ARFs via their PB1 domains, but not with repressing ARFs. Based on these results, we propose a model in which clade-D ARFs enhance gene expression by interacting with DNA bound clade-A ARFs. Further, we show that ARFd1 must form oligomers for full activity. |
doi_str_mv | 10.1371/journal.pbio.3002163 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2838338741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A756767837</galeid><doaj_id>oai_doaj_org_article_dcebd61a04b54772afeb6f3ae82ed486</doaj_id><sourcerecordid>A756767837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696t-3b89a708aa9f2eed07a921bfc15a36b55864165077c89ee2c9e36ff2a3b3dc7d3</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEomXhHyCIxAUOu9hxYjunqlq-Vqoo4utqTZxJ1lViBzup2n-Pl02rLuoBlEOimed9x57JJMlzSlaUCfr2wk3eQrcaKuNWjJCMcvYgOaZFXiyFlMXDO99HyZMQLiKTlZl8nBwxwWhBODlOtusOaly-S2G6Mjb1GAZnA6YN6NH5EAPt1MGIcz6YNtY0tk3B1mmNl9i5oUc7pjE5bjHtXQjpl-110K43ozdTnw5RbsPT5FEDXcBn83uR_Pjw_vv60_Ls_ONmfXq21Lzk45JVsgRBJEDZZIg1EVBmtGo0LYDxqigkzykviBBaloiZLpHxpsmAVazWomaL5OXed-hcUHOTgsokk4xJkdNIbPZE7eBCDd704K-VA6P-BJxvFfjR6A5VrbGqOQWSV0UuRAYNVrxhgDLDOpc8ep3M1aaqx4jb0UN3YHqYsWarWnepKMnKMp4oOryeHbz7NWEYVW-Cxq4Di27aHTzjcbSyIBF99Rd6__VmqoV4A2MbFwvrnak6FQUXXMg4_kWyuoeKT4290c5iY2L8QPDmQBCZEa_GFqYQ1Obb1_9gP_87e_7zkM33rPbxN_PY3DaaErVbipuGqN1SqHkpouzF3SHdim62gP0GdSsJBw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838338741</pqid></control><display><type>article</type><title>Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bascom, Jr, Carlisle ; Prigge, Michael J ; Szutu, Whitnie ; Bantle, Alexis ; Irmak, Sophie ; Tu, Daniella ; Estelle, Mark</creator><creatorcontrib>Bascom, Jr, Carlisle ; Prigge, Michael J ; Szutu, Whitnie ; Bantle, Alexis ; Irmak, Sophie ; Tu, Daniella ; Estelle, Mark</creatorcontrib><description>Auxin response factors (ARFs) are a family of transcription factors that are responsible for regulating gene expression in response to changes in auxin level. The analysis of ARF sequence and activity indicates that there are 2 major groups: activators and repressors. One clade of ARFs, clade-D, is sister to clade-A activating ARFs, but are unique in that they lack a DNA-binding domain. Clade-D ARFs are present in lycophytes and bryophytes but absent in other plant lineages. The transcriptional activity of clade-D ARFs, as well as how they regulate gene expression, is not well understood. Here, we report that clade-D ARFs are transcriptional activators in the model bryophyte Physcomitrium patens and have a major role in the development of this species. Δarfddub protonemata exhibit a delay in filament branching, as well as a delay in the chloronema to caulonema transition. Additionally, leafy gametophore development in Δarfddub lines lags behind wild type. We present evidence that ARFd1 interacts with activating ARFs via their PB1 domains, but not with repressing ARFs. Based on these results, we propose a model in which clade-D ARFs enhance gene expression by interacting with DNA bound clade-A ARFs. Further, we show that ARFd1 must form oligomers for full activity.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3002163</identifier><identifier>PMID: 37315060</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Aquatic plants ; Auxin ; Auxins ; Biology and Life Sciences ; Botanical research ; Bryophytes ; Cellular signal transduction ; Chlorophyll ; CRISPR ; Deoxyribonucleic acid ; DNA ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Genetic aspects ; Genetic regulation ; Genomes ; Genotype & phenotype ; Indoleacetic Acids - metabolism ; Moss ; Mutation ; Physcomitrium patens ; Physical Sciences ; Physiological aspects ; Plant Proteins - metabolism ; Proteins ; Repressors ; Research and Analysis Methods ; Signal Transduction ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>PLoS biology, 2023-06, Vol.21 (6), p.e3002163-e3002163</ispartof><rights>Copyright: © 2023 Bascom et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Bascom et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Bascom et al 2023 Bascom et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c696t-3b89a708aa9f2eed07a921bfc15a36b55864165077c89ee2c9e36ff2a3b3dc7d3</citedby><cites>FETCH-LOGICAL-c696t-3b89a708aa9f2eed07a921bfc15a36b55864165077c89ee2c9e36ff2a3b3dc7d3</cites><orcidid>0000-0002-2613-8652 ; 0000-0003-0188-8657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299833/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299833/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37315060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bascom, Jr, Carlisle</creatorcontrib><creatorcontrib>Prigge, Michael J</creatorcontrib><creatorcontrib>Szutu, Whitnie</creatorcontrib><creatorcontrib>Bantle, Alexis</creatorcontrib><creatorcontrib>Irmak, Sophie</creatorcontrib><creatorcontrib>Tu, Daniella</creatorcontrib><creatorcontrib>Estelle, Mark</creatorcontrib><title>Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Auxin response factors (ARFs) are a family of transcription factors that are responsible for regulating gene expression in response to changes in auxin level. The analysis of ARF sequence and activity indicates that there are 2 major groups: activators and repressors. One clade of ARFs, clade-D, is sister to clade-A activating ARFs, but are unique in that they lack a DNA-binding domain. Clade-D ARFs are present in lycophytes and bryophytes but absent in other plant lineages. The transcriptional activity of clade-D ARFs, as well as how they regulate gene expression, is not well understood. Here, we report that clade-D ARFs are transcriptional activators in the model bryophyte Physcomitrium patens and have a major role in the development of this species. Δarfddub protonemata exhibit a delay in filament branching, as well as a delay in the chloronema to caulonema transition. Additionally, leafy gametophore development in Δarfddub lines lags behind wild type. We present evidence that ARFd1 interacts with activating ARFs via their PB1 domains, but not with repressing ARFs. Based on these results, we propose a model in which clade-D ARFs enhance gene expression by interacting with DNA bound clade-A ARFs. Further, we show that ARFd1 must form oligomers for full activity.</description><subject>Acids</subject><subject>Aquatic plants</subject><subject>Auxin</subject><subject>Auxins</subject><subject>Biology and Life Sciences</subject><subject>Botanical research</subject><subject>Bryophytes</subject><subject>Cellular signal transduction</subject><subject>Chlorophyll</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Moss</subject><subject>Mutation</subject><subject>Physcomitrium patens</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plant Proteins - metabolism</subject><subject>Proteins</subject><subject>Repressors</subject><subject>Research and Analysis Methods</subject><subject>Signal Transduction</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEomXhHyCIxAUOu9hxYjunqlq-Vqoo4utqTZxJ1lViBzup2n-Pl02rLuoBlEOimed9x57JJMlzSlaUCfr2wk3eQrcaKuNWjJCMcvYgOaZFXiyFlMXDO99HyZMQLiKTlZl8nBwxwWhBODlOtusOaly-S2G6Mjb1GAZnA6YN6NH5EAPt1MGIcz6YNtY0tk3B1mmNl9i5oUc7pjE5bjHtXQjpl-110K43ozdTnw5RbsPT5FEDXcBn83uR_Pjw_vv60_Ls_ONmfXq21Lzk45JVsgRBJEDZZIg1EVBmtGo0LYDxqigkzykviBBaloiZLpHxpsmAVazWomaL5OXed-hcUHOTgsokk4xJkdNIbPZE7eBCDd704K-VA6P-BJxvFfjR6A5VrbGqOQWSV0UuRAYNVrxhgDLDOpc8ep3M1aaqx4jb0UN3YHqYsWarWnepKMnKMp4oOryeHbz7NWEYVW-Cxq4Di27aHTzjcbSyIBF99Rd6__VmqoV4A2MbFwvrnak6FQUXXMg4_kWyuoeKT4290c5iY2L8QPDmQBCZEa_GFqYQ1Obb1_9gP_87e_7zkM33rPbxN_PY3DaaErVbipuGqN1SqHkpouzF3SHdim62gP0GdSsJBw</recordid><startdate>20230614</startdate><enddate>20230614</enddate><creator>Bascom, Jr, Carlisle</creator><creator>Prigge, Michael J</creator><creator>Szutu, Whitnie</creator><creator>Bantle, Alexis</creator><creator>Irmak, Sophie</creator><creator>Tu, Daniella</creator><creator>Estelle, Mark</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-2613-8652</orcidid><orcidid>https://orcid.org/0000-0003-0188-8657</orcidid></search><sort><creationdate>20230614</creationdate><title>Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens</title><author>Bascom, Jr, Carlisle ; Prigge, Michael J ; Szutu, Whitnie ; Bantle, Alexis ; Irmak, Sophie ; Tu, Daniella ; Estelle, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696t-3b89a708aa9f2eed07a921bfc15a36b55864165077c89ee2c9e36ff2a3b3dc7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Aquatic plants</topic><topic>Auxin</topic><topic>Auxins</topic><topic>Biology and Life Sciences</topic><topic>Botanical research</topic><topic>Bryophytes</topic><topic>Cellular signal transduction</topic><topic>Chlorophyll</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Moss</topic><topic>Mutation</topic><topic>Physcomitrium patens</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plant Proteins - metabolism</topic><topic>Proteins</topic><topic>Repressors</topic><topic>Research and Analysis Methods</topic><topic>Signal Transduction</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bascom, Jr, Carlisle</creatorcontrib><creatorcontrib>Prigge, Michael J</creatorcontrib><creatorcontrib>Szutu, Whitnie</creatorcontrib><creatorcontrib>Bantle, Alexis</creatorcontrib><creatorcontrib>Irmak, Sophie</creatorcontrib><creatorcontrib>Tu, Daniella</creatorcontrib><creatorcontrib>Estelle, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bascom, Jr, Carlisle</au><au>Prigge, Michael J</au><au>Szutu, Whitnie</au><au>Bantle, Alexis</au><au>Irmak, Sophie</au><au>Tu, Daniella</au><au>Estelle, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2023-06-14</date><risdate>2023</risdate><volume>21</volume><issue>6</issue><spage>e3002163</spage><epage>e3002163</epage><pages>e3002163-e3002163</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Auxin response factors (ARFs) are a family of transcription factors that are responsible for regulating gene expression in response to changes in auxin level. The analysis of ARF sequence and activity indicates that there are 2 major groups: activators and repressors. One clade of ARFs, clade-D, is sister to clade-A activating ARFs, but are unique in that they lack a DNA-binding domain. Clade-D ARFs are present in lycophytes and bryophytes but absent in other plant lineages. The transcriptional activity of clade-D ARFs, as well as how they regulate gene expression, is not well understood. Here, we report that clade-D ARFs are transcriptional activators in the model bryophyte Physcomitrium patens and have a major role in the development of this species. Δarfddub protonemata exhibit a delay in filament branching, as well as a delay in the chloronema to caulonema transition. Additionally, leafy gametophore development in Δarfddub lines lags behind wild type. We present evidence that ARFd1 interacts with activating ARFs via their PB1 domains, but not with repressing ARFs. Based on these results, we propose a model in which clade-D ARFs enhance gene expression by interacting with DNA bound clade-A ARFs. Further, we show that ARFd1 must form oligomers for full activity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37315060</pmid><doi>10.1371/journal.pbio.3002163</doi><orcidid>https://orcid.org/0000-0002-2613-8652</orcidid><orcidid>https://orcid.org/0000-0003-0188-8657</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2023-06, Vol.21 (6), p.e3002163-e3002163 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2838338741 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Acids Aquatic plants Auxin Auxins Biology and Life Sciences Botanical research Bryophytes Cellular signal transduction Chlorophyll CRISPR Deoxyribonucleic acid DNA Gene expression Gene Expression Regulation, Plant Genes Genetic aspects Genetic regulation Genomes Genotype & phenotype Indoleacetic Acids - metabolism Moss Mutation Physcomitrium patens Physical Sciences Physiological aspects Plant Proteins - metabolism Proteins Repressors Research and Analysis Methods Signal Transduction Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
title | Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clade-D%20auxin%20response%20factors%20regulate%20auxin%20signaling%20and%20development%20in%20the%20moss%20Physcomitrium%20patens&rft.jtitle=PLoS%20biology&rft.au=Bascom,%20Jr,%20Carlisle&rft.date=2023-06-14&rft.volume=21&rft.issue=6&rft.spage=e3002163&rft.epage=e3002163&rft.pages=e3002163-e3002163&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3002163&rft_dat=%3Cgale_plos_%3EA756767837%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838338741&rft_id=info:pmid/37315060&rft_galeid=A756767837&rft_doaj_id=oai_doaj_org_article_dcebd61a04b54772afeb6f3ae82ed486&rfr_iscdi=true |