Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens

Auxin response factors (ARFs) are a family of transcription factors that are responsible for regulating gene expression in response to changes in auxin level. The analysis of ARF sequence and activity indicates that there are 2 major groups: activators and repressors. One clade of ARFs, clade-D, is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2023-06, Vol.21 (6), p.e3002163-e3002163
Hauptverfasser: Bascom, Jr, Carlisle, Prigge, Michael J, Szutu, Whitnie, Bantle, Alexis, Irmak, Sophie, Tu, Daniella, Estelle, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3002163
container_issue 6
container_start_page e3002163
container_title PLoS biology
container_volume 21
creator Bascom, Jr, Carlisle
Prigge, Michael J
Szutu, Whitnie
Bantle, Alexis
Irmak, Sophie
Tu, Daniella
Estelle, Mark
description Auxin response factors (ARFs) are a family of transcription factors that are responsible for regulating gene expression in response to changes in auxin level. The analysis of ARF sequence and activity indicates that there are 2 major groups: activators and repressors. One clade of ARFs, clade-D, is sister to clade-A activating ARFs, but are unique in that they lack a DNA-binding domain. Clade-D ARFs are present in lycophytes and bryophytes but absent in other plant lineages. The transcriptional activity of clade-D ARFs, as well as how they regulate gene expression, is not well understood. Here, we report that clade-D ARFs are transcriptional activators in the model bryophyte Physcomitrium patens and have a major role in the development of this species. Δarfddub protonemata exhibit a delay in filament branching, as well as a delay in the chloronema to caulonema transition. Additionally, leafy gametophore development in Δarfddub lines lags behind wild type. We present evidence that ARFd1 interacts with activating ARFs via their PB1 domains, but not with repressing ARFs. Based on these results, we propose a model in which clade-D ARFs enhance gene expression by interacting with DNA bound clade-A ARFs. Further, we show that ARFd1 must form oligomers for full activity.
doi_str_mv 10.1371/journal.pbio.3002163
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2838338741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A756767837</galeid><doaj_id>oai_doaj_org_article_dcebd61a04b54772afeb6f3ae82ed486</doaj_id><sourcerecordid>A756767837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696t-3b89a708aa9f2eed07a921bfc15a36b55864165077c89ee2c9e36ff2a3b3dc7d3</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEomXhHyCIxAUOu9hxYjunqlq-Vqoo4utqTZxJ1lViBzup2n-Pl02rLuoBlEOimed9x57JJMlzSlaUCfr2wk3eQrcaKuNWjJCMcvYgOaZFXiyFlMXDO99HyZMQLiKTlZl8nBwxwWhBODlOtusOaly-S2G6Mjb1GAZnA6YN6NH5EAPt1MGIcz6YNtY0tk3B1mmNl9i5oUc7pjE5bjHtXQjpl-110K43ozdTnw5RbsPT5FEDXcBn83uR_Pjw_vv60_Ls_ONmfXq21Lzk45JVsgRBJEDZZIg1EVBmtGo0LYDxqigkzykviBBaloiZLpHxpsmAVazWomaL5OXed-hcUHOTgsokk4xJkdNIbPZE7eBCDd704K-VA6P-BJxvFfjR6A5VrbGqOQWSV0UuRAYNVrxhgDLDOpc8ep3M1aaqx4jb0UN3YHqYsWarWnepKMnKMp4oOryeHbz7NWEYVW-Cxq4Di27aHTzjcbSyIBF99Rd6__VmqoV4A2MbFwvrnak6FQUXXMg4_kWyuoeKT4290c5iY2L8QPDmQBCZEa_GFqYQ1Obb1_9gP_87e_7zkM33rPbxN_PY3DaaErVbipuGqN1SqHkpouzF3SHdim62gP0GdSsJBw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838338741</pqid></control><display><type>article</type><title>Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bascom, Jr, Carlisle ; Prigge, Michael J ; Szutu, Whitnie ; Bantle, Alexis ; Irmak, Sophie ; Tu, Daniella ; Estelle, Mark</creator><creatorcontrib>Bascom, Jr, Carlisle ; Prigge, Michael J ; Szutu, Whitnie ; Bantle, Alexis ; Irmak, Sophie ; Tu, Daniella ; Estelle, Mark</creatorcontrib><description>Auxin response factors (ARFs) are a family of transcription factors that are responsible for regulating gene expression in response to changes in auxin level. The analysis of ARF sequence and activity indicates that there are 2 major groups: activators and repressors. One clade of ARFs, clade-D, is sister to clade-A activating ARFs, but are unique in that they lack a DNA-binding domain. Clade-D ARFs are present in lycophytes and bryophytes but absent in other plant lineages. The transcriptional activity of clade-D ARFs, as well as how they regulate gene expression, is not well understood. Here, we report that clade-D ARFs are transcriptional activators in the model bryophyte Physcomitrium patens and have a major role in the development of this species. Δarfddub protonemata exhibit a delay in filament branching, as well as a delay in the chloronema to caulonema transition. Additionally, leafy gametophore development in Δarfddub lines lags behind wild type. We present evidence that ARFd1 interacts with activating ARFs via their PB1 domains, but not with repressing ARFs. Based on these results, we propose a model in which clade-D ARFs enhance gene expression by interacting with DNA bound clade-A ARFs. Further, we show that ARFd1 must form oligomers for full activity.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3002163</identifier><identifier>PMID: 37315060</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Aquatic plants ; Auxin ; Auxins ; Biology and Life Sciences ; Botanical research ; Bryophytes ; Cellular signal transduction ; Chlorophyll ; CRISPR ; Deoxyribonucleic acid ; DNA ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Genetic aspects ; Genetic regulation ; Genomes ; Genotype &amp; phenotype ; Indoleacetic Acids - metabolism ; Moss ; Mutation ; Physcomitrium patens ; Physical Sciences ; Physiological aspects ; Plant Proteins - metabolism ; Proteins ; Repressors ; Research and Analysis Methods ; Signal Transduction ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>PLoS biology, 2023-06, Vol.21 (6), p.e3002163-e3002163</ispartof><rights>Copyright: © 2023 Bascom et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Bascom et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Bascom et al 2023 Bascom et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c696t-3b89a708aa9f2eed07a921bfc15a36b55864165077c89ee2c9e36ff2a3b3dc7d3</citedby><cites>FETCH-LOGICAL-c696t-3b89a708aa9f2eed07a921bfc15a36b55864165077c89ee2c9e36ff2a3b3dc7d3</cites><orcidid>0000-0002-2613-8652 ; 0000-0003-0188-8657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299833/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299833/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37315060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bascom, Jr, Carlisle</creatorcontrib><creatorcontrib>Prigge, Michael J</creatorcontrib><creatorcontrib>Szutu, Whitnie</creatorcontrib><creatorcontrib>Bantle, Alexis</creatorcontrib><creatorcontrib>Irmak, Sophie</creatorcontrib><creatorcontrib>Tu, Daniella</creatorcontrib><creatorcontrib>Estelle, Mark</creatorcontrib><title>Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Auxin response factors (ARFs) are a family of transcription factors that are responsible for regulating gene expression in response to changes in auxin level. The analysis of ARF sequence and activity indicates that there are 2 major groups: activators and repressors. One clade of ARFs, clade-D, is sister to clade-A activating ARFs, but are unique in that they lack a DNA-binding domain. Clade-D ARFs are present in lycophytes and bryophytes but absent in other plant lineages. The transcriptional activity of clade-D ARFs, as well as how they regulate gene expression, is not well understood. Here, we report that clade-D ARFs are transcriptional activators in the model bryophyte Physcomitrium patens and have a major role in the development of this species. Δarfddub protonemata exhibit a delay in filament branching, as well as a delay in the chloronema to caulonema transition. Additionally, leafy gametophore development in Δarfddub lines lags behind wild type. We present evidence that ARFd1 interacts with activating ARFs via their PB1 domains, but not with repressing ARFs. Based on these results, we propose a model in which clade-D ARFs enhance gene expression by interacting with DNA bound clade-A ARFs. Further, we show that ARFd1 must form oligomers for full activity.</description><subject>Acids</subject><subject>Aquatic plants</subject><subject>Auxin</subject><subject>Auxins</subject><subject>Biology and Life Sciences</subject><subject>Botanical research</subject><subject>Bryophytes</subject><subject>Cellular signal transduction</subject><subject>Chlorophyll</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Moss</subject><subject>Mutation</subject><subject>Physcomitrium patens</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plant Proteins - metabolism</subject><subject>Proteins</subject><subject>Repressors</subject><subject>Research and Analysis Methods</subject><subject>Signal Transduction</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEomXhHyCIxAUOu9hxYjunqlq-Vqoo4utqTZxJ1lViBzup2n-Pl02rLuoBlEOimed9x57JJMlzSlaUCfr2wk3eQrcaKuNWjJCMcvYgOaZFXiyFlMXDO99HyZMQLiKTlZl8nBwxwWhBODlOtusOaly-S2G6Mjb1GAZnA6YN6NH5EAPt1MGIcz6YNtY0tk3B1mmNl9i5oUc7pjE5bjHtXQjpl-110K43ozdTnw5RbsPT5FEDXcBn83uR_Pjw_vv60_Ls_ONmfXq21Lzk45JVsgRBJEDZZIg1EVBmtGo0LYDxqigkzykviBBaloiZLpHxpsmAVazWomaL5OXed-hcUHOTgsokk4xJkdNIbPZE7eBCDd704K-VA6P-BJxvFfjR6A5VrbGqOQWSV0UuRAYNVrxhgDLDOpc8ep3M1aaqx4jb0UN3YHqYsWarWnepKMnKMp4oOryeHbz7NWEYVW-Cxq4Di27aHTzjcbSyIBF99Rd6__VmqoV4A2MbFwvrnak6FQUXXMg4_kWyuoeKT4290c5iY2L8QPDmQBCZEa_GFqYQ1Obb1_9gP_87e_7zkM33rPbxN_PY3DaaErVbipuGqN1SqHkpouzF3SHdim62gP0GdSsJBw</recordid><startdate>20230614</startdate><enddate>20230614</enddate><creator>Bascom, Jr, Carlisle</creator><creator>Prigge, Michael J</creator><creator>Szutu, Whitnie</creator><creator>Bantle, Alexis</creator><creator>Irmak, Sophie</creator><creator>Tu, Daniella</creator><creator>Estelle, Mark</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-2613-8652</orcidid><orcidid>https://orcid.org/0000-0003-0188-8657</orcidid></search><sort><creationdate>20230614</creationdate><title>Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens</title><author>Bascom, Jr, Carlisle ; Prigge, Michael J ; Szutu, Whitnie ; Bantle, Alexis ; Irmak, Sophie ; Tu, Daniella ; Estelle, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696t-3b89a708aa9f2eed07a921bfc15a36b55864165077c89ee2c9e36ff2a3b3dc7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Aquatic plants</topic><topic>Auxin</topic><topic>Auxins</topic><topic>Biology and Life Sciences</topic><topic>Botanical research</topic><topic>Bryophytes</topic><topic>Cellular signal transduction</topic><topic>Chlorophyll</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Moss</topic><topic>Mutation</topic><topic>Physcomitrium patens</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plant Proteins - metabolism</topic><topic>Proteins</topic><topic>Repressors</topic><topic>Research and Analysis Methods</topic><topic>Signal Transduction</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bascom, Jr, Carlisle</creatorcontrib><creatorcontrib>Prigge, Michael J</creatorcontrib><creatorcontrib>Szutu, Whitnie</creatorcontrib><creatorcontrib>Bantle, Alexis</creatorcontrib><creatorcontrib>Irmak, Sophie</creatorcontrib><creatorcontrib>Tu, Daniella</creatorcontrib><creatorcontrib>Estelle, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bascom, Jr, Carlisle</au><au>Prigge, Michael J</au><au>Szutu, Whitnie</au><au>Bantle, Alexis</au><au>Irmak, Sophie</au><au>Tu, Daniella</au><au>Estelle, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2023-06-14</date><risdate>2023</risdate><volume>21</volume><issue>6</issue><spage>e3002163</spage><epage>e3002163</epage><pages>e3002163-e3002163</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Auxin response factors (ARFs) are a family of transcription factors that are responsible for regulating gene expression in response to changes in auxin level. The analysis of ARF sequence and activity indicates that there are 2 major groups: activators and repressors. One clade of ARFs, clade-D, is sister to clade-A activating ARFs, but are unique in that they lack a DNA-binding domain. Clade-D ARFs are present in lycophytes and bryophytes but absent in other plant lineages. The transcriptional activity of clade-D ARFs, as well as how they regulate gene expression, is not well understood. Here, we report that clade-D ARFs are transcriptional activators in the model bryophyte Physcomitrium patens and have a major role in the development of this species. Δarfddub protonemata exhibit a delay in filament branching, as well as a delay in the chloronema to caulonema transition. Additionally, leafy gametophore development in Δarfddub lines lags behind wild type. We present evidence that ARFd1 interacts with activating ARFs via their PB1 domains, but not with repressing ARFs. Based on these results, we propose a model in which clade-D ARFs enhance gene expression by interacting with DNA bound clade-A ARFs. Further, we show that ARFd1 must form oligomers for full activity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37315060</pmid><doi>10.1371/journal.pbio.3002163</doi><orcidid>https://orcid.org/0000-0002-2613-8652</orcidid><orcidid>https://orcid.org/0000-0003-0188-8657</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2023-06, Vol.21 (6), p.e3002163-e3002163
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2838338741
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Acids
Aquatic plants
Auxin
Auxins
Biology and Life Sciences
Botanical research
Bryophytes
Cellular signal transduction
Chlorophyll
CRISPR
Deoxyribonucleic acid
DNA
Gene expression
Gene Expression Regulation, Plant
Genes
Genetic aspects
Genetic regulation
Genomes
Genotype & phenotype
Indoleacetic Acids - metabolism
Moss
Mutation
Physcomitrium patens
Physical Sciences
Physiological aspects
Plant Proteins - metabolism
Proteins
Repressors
Research and Analysis Methods
Signal Transduction
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
title Clade-D auxin response factors regulate auxin signaling and development in the moss Physcomitrium patens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clade-D%20auxin%20response%20factors%20regulate%20auxin%20signaling%20and%20development%20in%20the%20moss%20Physcomitrium%20patens&rft.jtitle=PLoS%20biology&rft.au=Bascom,%20Jr,%20Carlisle&rft.date=2023-06-14&rft.volume=21&rft.issue=6&rft.spage=e3002163&rft.epage=e3002163&rft.pages=e3002163-e3002163&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3002163&rft_dat=%3Cgale_plos_%3EA756767837%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838338741&rft_id=info:pmid/37315060&rft_galeid=A756767837&rft_doaj_id=oai_doaj_org_article_dcebd61a04b54772afeb6f3ae82ed486&rfr_iscdi=true