ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes
Repressive KRAB domain-containing zinc-finger proteins (KRAB-ZFPs) are abundant in mammalian genomes and contribute both to the silencing of transposable elements (TEs) and to the regulation of developmental stage- and cell type-specific gene expression. Here we describe studies of zinc finger prote...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2023-05, Vol.19 (5), p.e1010729-e1010729 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010729 |
---|---|
container_issue | 5 |
container_start_page | e1010729 |
container_title | PLoS genetics |
container_volume | 19 |
creator | Osipovich, Anna B Dudek, Karrie D Trinh, Linh T Kim, Lily H Shrestha, Shristi Cartailler, Jean-Philippe Magnuson, Mark A |
description | Repressive KRAB domain-containing zinc-finger proteins (KRAB-ZFPs) are abundant in mammalian genomes and contribute both to the silencing of transposable elements (TEs) and to the regulation of developmental stage- and cell type-specific gene expression. Here we describe studies of zinc finger protein 92 (Zfp92), an X-linked KRAB-ZFP that is highly expressed in pancreatic islets of adult mice, by analyzing global Zfp92 knockout (KO) mice. Physiological, transcriptomic and genome-wide chromatin binding studies indicate that the principal function of ZFP92 in mice is to bind to and suppress the activity of B1/Alu type of SINE elements and modulate the activity of surrounding genomic entities. Deletion of Zfp92 leads to changes in expression of select LINE and LTR retroelements and genes located in the vicinity of ZFP92-bound chromatin. The absence of Zfp92 leads to altered expression of specific genes in islets, adipose and muscle that result in modest sex-specific alterations in blood glucose homeostasis, body mass and fat accumulation. In islets, Zfp92 influences blood glucose concentration in postnatal mice via transcriptional effects on Mafb, whereas in adipose and muscle, it regulates Acacb, a rate-limiting enzyme in fatty acid metabolism. In the absence of Zfp92, a novel TE-Capn11 fusion transcript is overexpressed in islets and several other tissues due to de-repression of an IAPez TE adjacent to ZFP92-bound SINE elements in intron 3 of the Capn11 gene. Together, these studies show that ZFP92 functions both to repress specific TEs and to regulate the transcription of specific genes in discrete tissues. |
doi_str_mv | 10.1371/journal.pgen.1010729 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2838338359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A754339905</galeid><doaj_id>oai_doaj_org_article_958a757243fb446dbbf604462b38535d</doaj_id><sourcerecordid>A754339905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c686t-6175c51edce4ebc233ceb4183410a695cf75ebc6ab8903826ec7d6d3e5c13dd03</originalsourceid><addsrcrecordid>eNptkmFrFDEQhhdRbK3-A9GAIAq9a7LZZHc_ybW0elhUWv3il5DNzu6l5JIzyYr6S_y55rxtuRVhIcPkmTcz706WPSV4TmhJTm7c4K00800Pdk4wwWVe38sOCWN0Vha4uL8XH2SPQrjBmLKqLh9mB6meMV7iw-z314tPdX6MJHp_tThFrVtLbdEvbRXqtO3Bo413EVIOrNdqBS1K8UZa5UFGrZAOBmI4Ro22bUDRoVNysjADul5-OEfRSxs2LsjGAAIDa7AxIGlb5KEfjIwQUhS9m9ylgSA8zh500gR4Mp5H2ZeL889n72aXH98uzxaXM8UrHmeclEwxAq2CAhqVU6qgKUhFC4Ilr5nqSpbyXDZVjWmVc1Bly1sKTBHatpgeZc93uhvjghhNDSKvaEXTx-pELHdE6-SN2Hi9lv6ncFKLvwnneyF9ssKAqFklS1bmBe2aouBt03QcpyBvaMUoa5PWm_G1oVlvm7bJIjMRnd5YvRK9-y7SD-ac4TwpvBoVvPs2QIhirYMCY6QFN2wbJ4TxuuIsoS_-Qf8_3kj1Mk2gbefSw2orKhYlKyita7zVej2hlLMRfsReDiGI5fXVlH25x65AmrgKzgxROxumYLEDlXcheOjujCBYbJf8tmGxXXIxLnkqe7Zv4l3R7VbTP4bo-Fk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838338359</pqid></control><display><type>article</type><title>ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Osipovich, Anna B ; Dudek, Karrie D ; Trinh, Linh T ; Kim, Lily H ; Shrestha, Shristi ; Cartailler, Jean-Philippe ; Magnuson, Mark A</creator><creatorcontrib>Osipovich, Anna B ; Dudek, Karrie D ; Trinh, Linh T ; Kim, Lily H ; Shrestha, Shristi ; Cartailler, Jean-Philippe ; Magnuson, Mark A</creatorcontrib><description>Repressive KRAB domain-containing zinc-finger proteins (KRAB-ZFPs) are abundant in mammalian genomes and contribute both to the silencing of transposable elements (TEs) and to the regulation of developmental stage- and cell type-specific gene expression. Here we describe studies of zinc finger protein 92 (Zfp92), an X-linked KRAB-ZFP that is highly expressed in pancreatic islets of adult mice, by analyzing global Zfp92 knockout (KO) mice. Physiological, transcriptomic and genome-wide chromatin binding studies indicate that the principal function of ZFP92 in mice is to bind to and suppress the activity of B1/Alu type of SINE elements and modulate the activity of surrounding genomic entities. Deletion of Zfp92 leads to changes in expression of select LINE and LTR retroelements and genes located in the vicinity of ZFP92-bound chromatin. The absence of Zfp92 leads to altered expression of specific genes in islets, adipose and muscle that result in modest sex-specific alterations in blood glucose homeostasis, body mass and fat accumulation. In islets, Zfp92 influences blood glucose concentration in postnatal mice via transcriptional effects on Mafb, whereas in adipose and muscle, it regulates Acacb, a rate-limiting enzyme in fatty acid metabolism. In the absence of Zfp92, a novel TE-Capn11 fusion transcript is overexpressed in islets and several other tissues due to de-repression of an IAPez TE adjacent to ZFP92-bound SINE elements in intron 3 of the Capn11 gene. Together, these studies show that ZFP92 functions both to repress specific TEs and to regulate the transcription of specific genes in discrete tissues.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010729</identifier><identifier>PMID: 37155670</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal genetics ; Animals ; Biology and Life Sciences ; Blood Glucose ; Blood levels ; Blood sugar ; Body mass ; Chromatin ; CRISPR ; Developmental stages ; DNA binding proteins ; DNA Transposable Elements ; Engineering and Technology ; Evolution ; Fatty acids ; Female ; Gene expression ; Genes ; Genetic aspects ; Genetic research ; Genetic transcription ; Genomes ; Genomics ; Homeostasis ; Insulin ; Islands of Langerhans ; Islets of Langerhans - metabolism ; Male ; Mammals - genetics ; Medicine and Health Sciences ; Mice ; Mutation ; Pancreas ; Physiological aspects ; Protein binding ; Proteins ; Repressor Proteins - genetics ; Retroelements - genetics ; Short interspersed nucleotide elements ; Stem cells ; Transcriptomics ; Transposons ; Zinc finger proteins ; Zinc Fingers - genetics</subject><ispartof>PLoS genetics, 2023-05, Vol.19 (5), p.e1010729-e1010729</ispartof><rights>Copyright: © 2023 Osipovich et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Osipovich et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Osipovich et al 2023 Osipovich et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c686t-6175c51edce4ebc233ceb4183410a695cf75ebc6ab8903826ec7d6d3e5c13dd03</citedby><cites>FETCH-LOGICAL-c686t-6175c51edce4ebc233ceb4183410a695cf75ebc6ab8903826ec7d6d3e5c13dd03</cites><orcidid>0000-0002-8824-6499 ; 0000-0002-9513-2262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166502/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166502/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37155670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osipovich, Anna B</creatorcontrib><creatorcontrib>Dudek, Karrie D</creatorcontrib><creatorcontrib>Trinh, Linh T</creatorcontrib><creatorcontrib>Kim, Lily H</creatorcontrib><creatorcontrib>Shrestha, Shristi</creatorcontrib><creatorcontrib>Cartailler, Jean-Philippe</creatorcontrib><creatorcontrib>Magnuson, Mark A</creatorcontrib><title>ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Repressive KRAB domain-containing zinc-finger proteins (KRAB-ZFPs) are abundant in mammalian genomes and contribute both to the silencing of transposable elements (TEs) and to the regulation of developmental stage- and cell type-specific gene expression. Here we describe studies of zinc finger protein 92 (Zfp92), an X-linked KRAB-ZFP that is highly expressed in pancreatic islets of adult mice, by analyzing global Zfp92 knockout (KO) mice. Physiological, transcriptomic and genome-wide chromatin binding studies indicate that the principal function of ZFP92 in mice is to bind to and suppress the activity of B1/Alu type of SINE elements and modulate the activity of surrounding genomic entities. Deletion of Zfp92 leads to changes in expression of select LINE and LTR retroelements and genes located in the vicinity of ZFP92-bound chromatin. The absence of Zfp92 leads to altered expression of specific genes in islets, adipose and muscle that result in modest sex-specific alterations in blood glucose homeostasis, body mass and fat accumulation. In islets, Zfp92 influences blood glucose concentration in postnatal mice via transcriptional effects on Mafb, whereas in adipose and muscle, it regulates Acacb, a rate-limiting enzyme in fatty acid metabolism. In the absence of Zfp92, a novel TE-Capn11 fusion transcript is overexpressed in islets and several other tissues due to de-repression of an IAPez TE adjacent to ZFP92-bound SINE elements in intron 3 of the Capn11 gene. Together, these studies show that ZFP92 functions both to repress specific TEs and to regulate the transcription of specific genes in discrete tissues.</description><subject>Animal genetics</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Blood Glucose</subject><subject>Blood levels</subject><subject>Blood sugar</subject><subject>Body mass</subject><subject>Chromatin</subject><subject>CRISPR</subject><subject>Developmental stages</subject><subject>DNA binding proteins</subject><subject>DNA Transposable Elements</subject><subject>Engineering and Technology</subject><subject>Evolution</subject><subject>Fatty acids</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Homeostasis</subject><subject>Insulin</subject><subject>Islands of Langerhans</subject><subject>Islets of Langerhans - metabolism</subject><subject>Male</subject><subject>Mammals - genetics</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mutation</subject><subject>Pancreas</subject><subject>Physiological aspects</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Repressor Proteins - genetics</subject><subject>Retroelements - genetics</subject><subject>Short interspersed nucleotide elements</subject><subject>Stem cells</subject><subject>Transcriptomics</subject><subject>Transposons</subject><subject>Zinc finger proteins</subject><subject>Zinc Fingers - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkmFrFDEQhhdRbK3-A9GAIAq9a7LZZHc_ybW0elhUWv3il5DNzu6l5JIzyYr6S_y55rxtuRVhIcPkmTcz706WPSV4TmhJTm7c4K00800Pdk4wwWVe38sOCWN0Vha4uL8XH2SPQrjBmLKqLh9mB6meMV7iw-z314tPdX6MJHp_tThFrVtLbdEvbRXqtO3Bo413EVIOrNdqBS1K8UZa5UFGrZAOBmI4Ro22bUDRoVNysjADul5-OEfRSxs2LsjGAAIDa7AxIGlb5KEfjIwQUhS9m9ylgSA8zh500gR4Mp5H2ZeL889n72aXH98uzxaXM8UrHmeclEwxAq2CAhqVU6qgKUhFC4Ilr5nqSpbyXDZVjWmVc1Bly1sKTBHatpgeZc93uhvjghhNDSKvaEXTx-pELHdE6-SN2Hi9lv6ncFKLvwnneyF9ssKAqFklS1bmBe2aouBt03QcpyBvaMUoa5PWm_G1oVlvm7bJIjMRnd5YvRK9-y7SD-ac4TwpvBoVvPs2QIhirYMCY6QFN2wbJ4TxuuIsoS_-Qf8_3kj1Mk2gbefSw2orKhYlKyita7zVej2hlLMRfsReDiGI5fXVlH25x65AmrgKzgxROxumYLEDlXcheOjujCBYbJf8tmGxXXIxLnkqe7Zv4l3R7VbTP4bo-Fk</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Osipovich, Anna B</creator><creator>Dudek, Karrie D</creator><creator>Trinh, Linh T</creator><creator>Kim, Lily H</creator><creator>Shrestha, Shristi</creator><creator>Cartailler, Jean-Philippe</creator><creator>Magnuson, Mark A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8824-6499</orcidid><orcidid>https://orcid.org/0000-0002-9513-2262</orcidid></search><sort><creationdate>20230508</creationdate><title>ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes</title><author>Osipovich, Anna B ; Dudek, Karrie D ; Trinh, Linh T ; Kim, Lily H ; Shrestha, Shristi ; Cartailler, Jean-Philippe ; Magnuson, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c686t-6175c51edce4ebc233ceb4183410a695cf75ebc6ab8903826ec7d6d3e5c13dd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal genetics</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Blood Glucose</topic><topic>Blood levels</topic><topic>Blood sugar</topic><topic>Body mass</topic><topic>Chromatin</topic><topic>CRISPR</topic><topic>Developmental stages</topic><topic>DNA binding proteins</topic><topic>DNA Transposable Elements</topic><topic>Engineering and Technology</topic><topic>Evolution</topic><topic>Fatty acids</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Homeostasis</topic><topic>Insulin</topic><topic>Islands of Langerhans</topic><topic>Islets of Langerhans - metabolism</topic><topic>Male</topic><topic>Mammals - genetics</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mutation</topic><topic>Pancreas</topic><topic>Physiological aspects</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Repressor Proteins - genetics</topic><topic>Retroelements - genetics</topic><topic>Short interspersed nucleotide elements</topic><topic>Stem cells</topic><topic>Transcriptomics</topic><topic>Transposons</topic><topic>Zinc finger proteins</topic><topic>Zinc Fingers - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osipovich, Anna B</creatorcontrib><creatorcontrib>Dudek, Karrie D</creatorcontrib><creatorcontrib>Trinh, Linh T</creatorcontrib><creatorcontrib>Kim, Lily H</creatorcontrib><creatorcontrib>Shrestha, Shristi</creatorcontrib><creatorcontrib>Cartailler, Jean-Philippe</creatorcontrib><creatorcontrib>Magnuson, Mark A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osipovich, Anna B</au><au>Dudek, Karrie D</au><au>Trinh, Linh T</au><au>Kim, Lily H</au><au>Shrestha, Shristi</au><au>Cartailler, Jean-Philippe</au><au>Magnuson, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2023-05-08</date><risdate>2023</risdate><volume>19</volume><issue>5</issue><spage>e1010729</spage><epage>e1010729</epage><pages>e1010729-e1010729</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Repressive KRAB domain-containing zinc-finger proteins (KRAB-ZFPs) are abundant in mammalian genomes and contribute both to the silencing of transposable elements (TEs) and to the regulation of developmental stage- and cell type-specific gene expression. Here we describe studies of zinc finger protein 92 (Zfp92), an X-linked KRAB-ZFP that is highly expressed in pancreatic islets of adult mice, by analyzing global Zfp92 knockout (KO) mice. Physiological, transcriptomic and genome-wide chromatin binding studies indicate that the principal function of ZFP92 in mice is to bind to and suppress the activity of B1/Alu type of SINE elements and modulate the activity of surrounding genomic entities. Deletion of Zfp92 leads to changes in expression of select LINE and LTR retroelements and genes located in the vicinity of ZFP92-bound chromatin. The absence of Zfp92 leads to altered expression of specific genes in islets, adipose and muscle that result in modest sex-specific alterations in blood glucose homeostasis, body mass and fat accumulation. In islets, Zfp92 influences blood glucose concentration in postnatal mice via transcriptional effects on Mafb, whereas in adipose and muscle, it regulates Acacb, a rate-limiting enzyme in fatty acid metabolism. In the absence of Zfp92, a novel TE-Capn11 fusion transcript is overexpressed in islets and several other tissues due to de-repression of an IAPez TE adjacent to ZFP92-bound SINE elements in intron 3 of the Capn11 gene. Together, these studies show that ZFP92 functions both to repress specific TEs and to regulate the transcription of specific genes in discrete tissues.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37155670</pmid><doi>10.1371/journal.pgen.1010729</doi><tpages>e1010729</tpages><orcidid>https://orcid.org/0000-0002-8824-6499</orcidid><orcidid>https://orcid.org/0000-0002-9513-2262</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2023-05, Vol.19 (5), p.e1010729-e1010729 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2838338359 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animal genetics Animals Biology and Life Sciences Blood Glucose Blood levels Blood sugar Body mass Chromatin CRISPR Developmental stages DNA binding proteins DNA Transposable Elements Engineering and Technology Evolution Fatty acids Female Gene expression Genes Genetic aspects Genetic research Genetic transcription Genomes Genomics Homeostasis Insulin Islands of Langerhans Islets of Langerhans - metabolism Male Mammals - genetics Medicine and Health Sciences Mice Mutation Pancreas Physiological aspects Protein binding Proteins Repressor Proteins - genetics Retroelements - genetics Short interspersed nucleotide elements Stem cells Transcriptomics Transposons Zinc finger proteins Zinc Fingers - genetics |
title | ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T11%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZFP92,%20a%20KRAB%20domain%20zinc%20finger%20protein%20enriched%20in%20pancreatic%20islets,%20binds%20to%20B1/Alu%20SINE%20transposable%20elements%20and%20regulates%20retroelements%20and%20genes&rft.jtitle=PLoS%20genetics&rft.au=Osipovich,%20Anna%20B&rft.date=2023-05-08&rft.volume=19&rft.issue=5&rft.spage=e1010729&rft.epage=e1010729&rft.pages=e1010729-e1010729&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010729&rft_dat=%3Cgale_plos_%3EA754339905%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838338359&rft_id=info:pmid/37155670&rft_galeid=A754339905&rft_doaj_id=oai_doaj_org_article_958a757243fb446dbbf604462b38535d&rfr_iscdi=true |