PfCRT mutations conferring piperaquine resistance in falciparum malaria shape the kinetics of quinoline drug binding and transport
The chloroquine resistance transporter (PfCRT) confers resistance to a wide range of quinoline and quinoline-like antimalarial drugs in Plasmodium falciparum, with local drug histories driving its evolution and, hence, the drug transport specificities. For example, the change in prescription practic...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2023-06, Vol.19 (6), p.e1011436-e1011436 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1011436 |
---|---|
container_issue | 6 |
container_start_page | e1011436 |
container_title | PLoS pathogens |
container_volume | 19 |
creator | Gomez, Guillermo M D'Arrigo, Giulia Sanchez, Cecilia P Berger, Fiona Wade, Rebecca C Lanzer, Michael |
description | The chloroquine resistance transporter (PfCRT) confers resistance to a wide range of quinoline and quinoline-like antimalarial drugs in Plasmodium falciparum, with local drug histories driving its evolution and, hence, the drug transport specificities. For example, the change in prescription practice from chloroquine (CQ) to piperaquine (PPQ) in Southeast Asia has resulted in PfCRT variants that carry an additional mutation, leading to PPQ resistance and, concomitantly, to CQ re-sensitization. How this additional amino acid substitution guides such opposing changes in drug susceptibility is largely unclear. Here, we show by detailed kinetic analyses that both the CQ- and the PPQ-resistance conferring PfCRT variants can bind and transport both drugs. Surprisingly, the kinetic profiles revealed subtle yet significant differences, defining a threshold for in vivo CQ and PPQ resistance. Competition kinetics, together with docking and molecular dynamics simulations, show that the PfCRT variant from the Southeast Asian P. falciparum strain Dd2 can accept simultaneously both CQ and PPQ at distinct but allosterically interacting sites. Furthermore, combining existing mutations associated with PPQ resistance created a PfCRT isoform with unprecedented non-Michaelis-Menten kinetics and superior transport efficiency for both CQ and PPQ. Our study provides additional insights into the organization of the substrate binding cavity of PfCRT and, in addition, reveals perspectives for PfCRT variants with equal transport efficiencies for both PPQ and CQ. |
doi_str_mv | 10.1371/journal.ppat.1011436 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2838334868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A756301095</galeid><doaj_id>oai_doaj_org_article_4dfce052391d4bef93bf212ea18e6e8b</doaj_id><sourcerecordid>A756301095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c662t-19e4b19a077f6f29c416b0316c0f19f06a1c3f91d4a9b62b94dc654dcfb118be3</originalsourceid><addsrcrecordid>eNqVk81u1DAUhSMEoqXwBggssYHFDHacOPGqqkb8jFQBKmVtOc51xiWxU9tBsOXJcZi06qBuUCQnsr9zbs6Vb5Y9J3hNaEXeXrnJW9mvx1HGNcGEFJQ9yI5JWdJVRavi4Z3vo-xJCFcYF4QS9jg7olVel7Tix9nvL3pzcYmGKcponA1IOavBe2M7NJoRvLyejAXkIZgQpVWAjEVa9sqM0k8DGmQvvZEo7OQIKO4AfU98NCogp9Esdv1s0PqpQ42x7ewsbYuilzaMzsen2aPkF-DZ8j7Jvr1_d7n5uDr__GG7OTtfKcbyuCIcioZwiatKM51zVRDW4JRHYU24xkwSRTUnbSF5w_KGF61iZVp0Q0jdAD3JXu59x94FsbQviLymNaVFzepEbPdE6-SVGL0ZpP8lnDTi74bznZA-RetBFK1WgMuczgUb0Jw2Oic5SFIDg7pJXqdLtakZoFVgU-D-wPTwxJqd6NwPQXBek7Iqk8PrxcG76wlCFIMJCvpeWnDT_OOpOsc45wl99Q96f7yF6mRKYKx2qbCaTcVZVTKKCeZz2fU9VHpaGEy6HaBN2j8QvDkQJCbCz9jJKQSx_XrxH-ynQ7bYs8q7EDzo2-YRLOYRuAkp5hEQywgk2Yu7jb8V3dx5-gfvOQSy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838334868</pqid></control><display><type>article</type><title>PfCRT mutations conferring piperaquine resistance in falciparum malaria shape the kinetics of quinoline drug binding and transport</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Gomez, Guillermo M ; D'Arrigo, Giulia ; Sanchez, Cecilia P ; Berger, Fiona ; Wade, Rebecca C ; Lanzer, Michael</creator><creatorcontrib>Gomez, Guillermo M ; D'Arrigo, Giulia ; Sanchez, Cecilia P ; Berger, Fiona ; Wade, Rebecca C ; Lanzer, Michael</creatorcontrib><description>The chloroquine resistance transporter (PfCRT) confers resistance to a wide range of quinoline and quinoline-like antimalarial drugs in Plasmodium falciparum, with local drug histories driving its evolution and, hence, the drug transport specificities. For example, the change in prescription practice from chloroquine (CQ) to piperaquine (PPQ) in Southeast Asia has resulted in PfCRT variants that carry an additional mutation, leading to PPQ resistance and, concomitantly, to CQ re-sensitization. How this additional amino acid substitution guides such opposing changes in drug susceptibility is largely unclear. Here, we show by detailed kinetic analyses that both the CQ- and the PPQ-resistance conferring PfCRT variants can bind and transport both drugs. Surprisingly, the kinetic profiles revealed subtle yet significant differences, defining a threshold for in vivo CQ and PPQ resistance. Competition kinetics, together with docking and molecular dynamics simulations, show that the PfCRT variant from the Southeast Asian P. falciparum strain Dd2 can accept simultaneously both CQ and PPQ at distinct but allosterically interacting sites. Furthermore, combining existing mutations associated with PPQ resistance created a PfCRT isoform with unprecedented non-Michaelis-Menten kinetics and superior transport efficiency for both CQ and PPQ. Our study provides additional insights into the organization of the substrate binding cavity of PfCRT and, in addition, reveals perspectives for PfCRT variants with equal transport efficiencies for both PPQ and CQ.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1011436</identifier><identifier>PMID: 37285379</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acid substitution ; Amino acids ; Analysis ; Antimalarial agents ; Antimalarials - chemistry ; Antiparasitic agents ; Binding ; Biology and Life Sciences ; Chloroquine ; Chloroquine - pharmacology ; Chloroquine - therapeutic use ; Control ; Drug resistance ; Drug Resistance - genetics ; Drug therapy ; Drugs ; Enzyme kinetics ; Evaluation ; Gene mutations ; Health aspects ; Hemoglobin ; Humans ; Identification and classification ; Kinetics ; Malaria ; Malaria, Falciparum - drug therapy ; Medicine and Health Sciences ; Molecular docking ; Molecular dynamics ; Mutation ; Parasites ; Physical Sciences ; Plasmodium falciparum ; Plasmodium falciparum - genetics ; Plasmodium falciparum - metabolism ; Prevention ; Protozoan Proteins - metabolism ; Quinoline ; Quinolines - pharmacology ; Quinolines - therapeutic use ; Research and Analysis Methods ; Risk factors ; Substrates ; Vector-borne diseases</subject><ispartof>PLoS pathogens, 2023-06, Vol.19 (6), p.e1011436-e1011436</ispartof><rights>Copyright: © 2023 Gomez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Gomez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Gomez et al 2023 Gomez et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c662t-19e4b19a077f6f29c416b0316c0f19f06a1c3f91d4a9b62b94dc654dcfb118be3</citedby><cites>FETCH-LOGICAL-c662t-19e4b19a077f6f29c416b0316c0f19f06a1c3f91d4a9b62b94dc654dcfb118be3</cites><orcidid>0000-0002-0220-6526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281575/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281575/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37285379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez, Guillermo M</creatorcontrib><creatorcontrib>D'Arrigo, Giulia</creatorcontrib><creatorcontrib>Sanchez, Cecilia P</creatorcontrib><creatorcontrib>Berger, Fiona</creatorcontrib><creatorcontrib>Wade, Rebecca C</creatorcontrib><creatorcontrib>Lanzer, Michael</creatorcontrib><title>PfCRT mutations conferring piperaquine resistance in falciparum malaria shape the kinetics of quinoline drug binding and transport</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The chloroquine resistance transporter (PfCRT) confers resistance to a wide range of quinoline and quinoline-like antimalarial drugs in Plasmodium falciparum, with local drug histories driving its evolution and, hence, the drug transport specificities. For example, the change in prescription practice from chloroquine (CQ) to piperaquine (PPQ) in Southeast Asia has resulted in PfCRT variants that carry an additional mutation, leading to PPQ resistance and, concomitantly, to CQ re-sensitization. How this additional amino acid substitution guides such opposing changes in drug susceptibility is largely unclear. Here, we show by detailed kinetic analyses that both the CQ- and the PPQ-resistance conferring PfCRT variants can bind and transport both drugs. Surprisingly, the kinetic profiles revealed subtle yet significant differences, defining a threshold for in vivo CQ and PPQ resistance. Competition kinetics, together with docking and molecular dynamics simulations, show that the PfCRT variant from the Southeast Asian P. falciparum strain Dd2 can accept simultaneously both CQ and PPQ at distinct but allosterically interacting sites. Furthermore, combining existing mutations associated with PPQ resistance created a PfCRT isoform with unprecedented non-Michaelis-Menten kinetics and superior transport efficiency for both CQ and PPQ. Our study provides additional insights into the organization of the substrate binding cavity of PfCRT and, in addition, reveals perspectives for PfCRT variants with equal transport efficiencies for both PPQ and CQ.</description><subject>Amino acid substitution</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Antimalarial agents</subject><subject>Antimalarials - chemistry</subject><subject>Antiparasitic agents</subject><subject>Binding</subject><subject>Biology and Life Sciences</subject><subject>Chloroquine</subject><subject>Chloroquine - pharmacology</subject><subject>Chloroquine - therapeutic use</subject><subject>Control</subject><subject>Drug resistance</subject><subject>Drug Resistance - genetics</subject><subject>Drug therapy</subject><subject>Drugs</subject><subject>Enzyme kinetics</subject><subject>Evaluation</subject><subject>Gene mutations</subject><subject>Health aspects</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Kinetics</subject><subject>Malaria</subject><subject>Malaria, Falciparum - drug therapy</subject><subject>Medicine and Health Sciences</subject><subject>Molecular docking</subject><subject>Molecular dynamics</subject><subject>Mutation</subject><subject>Parasites</subject><subject>Physical Sciences</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Prevention</subject><subject>Protozoan Proteins - metabolism</subject><subject>Quinoline</subject><subject>Quinolines - pharmacology</subject><subject>Quinolines - therapeutic use</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Substrates</subject><subject>Vector-borne diseases</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk81u1DAUhSMEoqXwBggssYHFDHacOPGqqkb8jFQBKmVtOc51xiWxU9tBsOXJcZi06qBuUCQnsr9zbs6Vb5Y9J3hNaEXeXrnJW9mvx1HGNcGEFJQ9yI5JWdJVRavi4Z3vo-xJCFcYF4QS9jg7olVel7Tix9nvL3pzcYmGKcponA1IOavBe2M7NJoRvLyejAXkIZgQpVWAjEVa9sqM0k8DGmQvvZEo7OQIKO4AfU98NCogp9Esdv1s0PqpQ42x7ewsbYuilzaMzsen2aPkF-DZ8j7Jvr1_d7n5uDr__GG7OTtfKcbyuCIcioZwiatKM51zVRDW4JRHYU24xkwSRTUnbSF5w_KGF61iZVp0Q0jdAD3JXu59x94FsbQviLymNaVFzepEbPdE6-SVGL0ZpP8lnDTi74bznZA-RetBFK1WgMuczgUb0Jw2Oic5SFIDg7pJXqdLtakZoFVgU-D-wPTwxJqd6NwPQXBek7Iqk8PrxcG76wlCFIMJCvpeWnDT_OOpOsc45wl99Q96f7yF6mRKYKx2qbCaTcVZVTKKCeZz2fU9VHpaGEy6HaBN2j8QvDkQJCbCz9jJKQSx_XrxH-ynQ7bYs8q7EDzo2-YRLOYRuAkp5hEQywgk2Yu7jb8V3dx5-gfvOQSy</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Gomez, Guillermo M</creator><creator>D'Arrigo, Giulia</creator><creator>Sanchez, Cecilia P</creator><creator>Berger, Fiona</creator><creator>Wade, Rebecca C</creator><creator>Lanzer, Michael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0220-6526</orcidid></search><sort><creationdate>20230601</creationdate><title>PfCRT mutations conferring piperaquine resistance in falciparum malaria shape the kinetics of quinoline drug binding and transport</title><author>Gomez, Guillermo M ; D'Arrigo, Giulia ; Sanchez, Cecilia P ; Berger, Fiona ; Wade, Rebecca C ; Lanzer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c662t-19e4b19a077f6f29c416b0316c0f19f06a1c3f91d4a9b62b94dc654dcfb118be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acid substitution</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Antimalarial agents</topic><topic>Antimalarials - chemistry</topic><topic>Antiparasitic agents</topic><topic>Binding</topic><topic>Biology and Life Sciences</topic><topic>Chloroquine</topic><topic>Chloroquine - pharmacology</topic><topic>Chloroquine - therapeutic use</topic><topic>Control</topic><topic>Drug resistance</topic><topic>Drug Resistance - genetics</topic><topic>Drug therapy</topic><topic>Drugs</topic><topic>Enzyme kinetics</topic><topic>Evaluation</topic><topic>Gene mutations</topic><topic>Health aspects</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Kinetics</topic><topic>Malaria</topic><topic>Malaria, Falciparum - drug therapy</topic><topic>Medicine and Health Sciences</topic><topic>Molecular docking</topic><topic>Molecular dynamics</topic><topic>Mutation</topic><topic>Parasites</topic><topic>Physical Sciences</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Prevention</topic><topic>Protozoan Proteins - metabolism</topic><topic>Quinoline</topic><topic>Quinolines - pharmacology</topic><topic>Quinolines - therapeutic use</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Substrates</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez, Guillermo M</creatorcontrib><creatorcontrib>D'Arrigo, Giulia</creatorcontrib><creatorcontrib>Sanchez, Cecilia P</creatorcontrib><creatorcontrib>Berger, Fiona</creatorcontrib><creatorcontrib>Wade, Rebecca C</creatorcontrib><creatorcontrib>Lanzer, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez, Guillermo M</au><au>D'Arrigo, Giulia</au><au>Sanchez, Cecilia P</au><au>Berger, Fiona</au><au>Wade, Rebecca C</au><au>Lanzer, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PfCRT mutations conferring piperaquine resistance in falciparum malaria shape the kinetics of quinoline drug binding and transport</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>19</volume><issue>6</issue><spage>e1011436</spage><epage>e1011436</epage><pages>e1011436-e1011436</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The chloroquine resistance transporter (PfCRT) confers resistance to a wide range of quinoline and quinoline-like antimalarial drugs in Plasmodium falciparum, with local drug histories driving its evolution and, hence, the drug transport specificities. For example, the change in prescription practice from chloroquine (CQ) to piperaquine (PPQ) in Southeast Asia has resulted in PfCRT variants that carry an additional mutation, leading to PPQ resistance and, concomitantly, to CQ re-sensitization. How this additional amino acid substitution guides such opposing changes in drug susceptibility is largely unclear. Here, we show by detailed kinetic analyses that both the CQ- and the PPQ-resistance conferring PfCRT variants can bind and transport both drugs. Surprisingly, the kinetic profiles revealed subtle yet significant differences, defining a threshold for in vivo CQ and PPQ resistance. Competition kinetics, together with docking and molecular dynamics simulations, show that the PfCRT variant from the Southeast Asian P. falciparum strain Dd2 can accept simultaneously both CQ and PPQ at distinct but allosterically interacting sites. Furthermore, combining existing mutations associated with PPQ resistance created a PfCRT isoform with unprecedented non-Michaelis-Menten kinetics and superior transport efficiency for both CQ and PPQ. Our study provides additional insights into the organization of the substrate binding cavity of PfCRT and, in addition, reveals perspectives for PfCRT variants with equal transport efficiencies for both PPQ and CQ.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37285379</pmid><doi>10.1371/journal.ppat.1011436</doi><tpages>e1011436</tpages><orcidid>https://orcid.org/0000-0002-0220-6526</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2023-06, Vol.19 (6), p.e1011436-e1011436 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2838334868 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Amino acid substitution Amino acids Analysis Antimalarial agents Antimalarials - chemistry Antiparasitic agents Binding Biology and Life Sciences Chloroquine Chloroquine - pharmacology Chloroquine - therapeutic use Control Drug resistance Drug Resistance - genetics Drug therapy Drugs Enzyme kinetics Evaluation Gene mutations Health aspects Hemoglobin Humans Identification and classification Kinetics Malaria Malaria, Falciparum - drug therapy Medicine and Health Sciences Molecular docking Molecular dynamics Mutation Parasites Physical Sciences Plasmodium falciparum Plasmodium falciparum - genetics Plasmodium falciparum - metabolism Prevention Protozoan Proteins - metabolism Quinoline Quinolines - pharmacology Quinolines - therapeutic use Research and Analysis Methods Risk factors Substrates Vector-borne diseases |
title | PfCRT mutations conferring piperaquine resistance in falciparum malaria shape the kinetics of quinoline drug binding and transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PfCRT%20mutations%20conferring%20piperaquine%20resistance%20in%20falciparum%20malaria%20shape%20the%20kinetics%20of%20quinoline%20drug%20binding%20and%20transport&rft.jtitle=PLoS%20pathogens&rft.au=Gomez,%20Guillermo%20M&rft.date=2023-06-01&rft.volume=19&rft.issue=6&rft.spage=e1011436&rft.epage=e1011436&rft.pages=e1011436-e1011436&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1011436&rft_dat=%3Cgale_plos_%3EA756301095%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838334868&rft_id=info:pmid/37285379&rft_galeid=A756301095&rft_doaj_id=oai_doaj_org_article_4dfce052391d4bef93bf212ea18e6e8b&rfr_iscdi=true |