Gain modulation and odor concentration invariance in early olfactory networks

The broad receptive field of the olfactory receptors constitutes the basis of a combinatorial code that allows animals to detect and discriminate many more odorants than the actual number of receptor types that they express. One drawback is that high odor concentrations recruit lower affinity recept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2023-06, Vol.19 (6), p.e1011176-e1011176
Hauptverfasser: Marachlian, Emiliano, Huerta, Ramón, Locatelli, Fernando F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1011176
container_issue 6
container_start_page e1011176
container_title PLoS computational biology
container_volume 19
creator Marachlian, Emiliano
Huerta, Ramón
Locatelli, Fernando F
description The broad receptive field of the olfactory receptors constitutes the basis of a combinatorial code that allows animals to detect and discriminate many more odorants than the actual number of receptor types that they express. One drawback is that high odor concentrations recruit lower affinity receptors which can lead to the perception of qualitatively different odors. Here we addressed the contribution that signal-processing in the antennal lobe makes to reduce concentration dependence in odor representation. By means of calcium imaging and pharmacological approach we describe the contribution that GABA receptors play in terms of the amplitude and temporal profiles of the signals that convey odor information from the antennal lobes to higher brain centers. We found that GABA reduces the amplitude of odor elicited signals and the number of glomeruli that are recruited in an odor-concentration-dependent manner. Blocking GABA receptors decreases the correlation among glomerular activity patterns elicited by different concentrations of the same odor. In addition, we built a realistic mathematical model of the antennal lobe that was used to test the viability of the proposed mechanisms and to evaluate the processing properties of the AL network under conditions that cannot be achieved in physiology experiments. Interestingly, even though based on a rather simple topology and cell interactions solely mediated by GABAergic lateral inhibitions, the AL model reproduced key features of the AL response upon different odor concentrations and provides plausible solutions for concentration invariant recognition of odors by artificial sensors.
doi_str_mv 10.1371/journal.pcbi.1011176
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2838334591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A756301754</galeid><doaj_id>oai_doaj_org_article_0951e220ca0e4f3fa3023e25e450c602</doaj_id><sourcerecordid>A756301754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-9606a5e779efae7db84c29e38f7b368eca4654f425cfabcec77c2abf30c858033</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvgHyBYiQscEvy53j2hqoISqYDEx9ma9Y6Dw8YO9m4h_x6HbKsG9YJ88Gj8zGvP6ymKp5QsKFf09TqM0UO_2JrWLSihlKrqXnFKpeRzxWV9_1Z8UjxKaU1IDpvqYXHCFRecsOa0-HABzpeb0I09DC74EnxXhi7E0gRv0A_xkHb-CqKDnMphiRD7XRl6C2YIcVd6HH6F-CM9Lh5Y6BM-mfZZ8e3d26_n7-eXny6W52eXc1NROsybilQgUakGLaDq2loY1iCvrWp5VaMBUUlhBZPGQmvQKGUYtJYTU8uacD4rnh90t31IenIiaVbzmnMhG5qJ5YHoAqz1NroNxJ0O4PTfRIgrDXFwpkdNGkmRMWKAoLDcQnaGI5MoJDFVjmfFm-m2sd1gd3ClPxI9PvHuu16FK00Jp4pxmRVeTgox_BwxDXrjksG-B49h3D-c1UoJyURGX_yD3t3eRK0gd-C8DflisxfVZ0pWnFAl91qLO6i8Oty4_L9oXc4fFbw6KsjMgL-HFYwp6eWXz__BfjxmxYE1MaQU0d6YR4neT_N1k3o_zXqa5lz27LbxN0XX48v_ABb48BQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838334591</pqid></control><display><type>article</type><title>Gain modulation and odor concentration invariance in early olfactory networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Marachlian, Emiliano ; Huerta, Ramón ; Locatelli, Fernando F</creator><contributor>van Vugt, Marieke Karlijn</contributor><creatorcontrib>Marachlian, Emiliano ; Huerta, Ramón ; Locatelli, Fernando F ; van Vugt, Marieke Karlijn</creatorcontrib><description>The broad receptive field of the olfactory receptors constitutes the basis of a combinatorial code that allows animals to detect and discriminate many more odorants than the actual number of receptor types that they express. One drawback is that high odor concentrations recruit lower affinity receptors which can lead to the perception of qualitatively different odors. Here we addressed the contribution that signal-processing in the antennal lobe makes to reduce concentration dependence in odor representation. By means of calcium imaging and pharmacological approach we describe the contribution that GABA receptors play in terms of the amplitude and temporal profiles of the signals that convey odor information from the antennal lobes to higher brain centers. We found that GABA reduces the amplitude of odor elicited signals and the number of glomeruli that are recruited in an odor-concentration-dependent manner. Blocking GABA receptors decreases the correlation among glomerular activity patterns elicited by different concentrations of the same odor. In addition, we built a realistic mathematical model of the antennal lobe that was used to test the viability of the proposed mechanisms and to evaluate the processing properties of the AL network under conditions that cannot be achieved in physiology experiments. Interestingly, even though based on a rather simple topology and cell interactions solely mediated by GABAergic lateral inhibitions, the AL model reproduced key features of the AL response upon different odor concentrations and provides plausible solutions for concentration invariant recognition of odors by artificial sensors.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011176</identifier><identifier>PMID: 37343029</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activity patterns ; Amplitudes ; Animals ; Antennal lobe ; Bees ; Biology and Life Sciences ; Calcium imaging ; Cell interactions ; Combinatorial analysis ; GABA ; Mathematical models ; Network topologies ; Neuroimaging ; Neurons ; Odorant receptors ; Odorants ; Odors ; Olfactory Pathways - physiology ; Olfactory Receptor Neurons - physiology ; Physical Sciences ; Physiology ; Receptive field ; Receptors ; Receptors, GABA ; Receptors, Odorant - metabolism ; Signal processing ; Smell - physiology ; Social Sciences ; Topology ; γ-Aminobutyric acid ; γ-Aminobutyric acid receptors</subject><ispartof>PLoS computational biology, 2023-06, Vol.19 (6), p.e1011176-e1011176</ispartof><rights>Copyright: © 2023 Marachlian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Marachlian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Marachlian et al 2023 Marachlian et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c611t-9606a5e779efae7db84c29e38f7b368eca4654f425cfabcec77c2abf30c858033</cites><orcidid>0000-0001-9826-5696 ; 0000-0002-8415-8264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317235/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317235/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37343029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>van Vugt, Marieke Karlijn</contributor><creatorcontrib>Marachlian, Emiliano</creatorcontrib><creatorcontrib>Huerta, Ramón</creatorcontrib><creatorcontrib>Locatelli, Fernando F</creatorcontrib><title>Gain modulation and odor concentration invariance in early olfactory networks</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The broad receptive field of the olfactory receptors constitutes the basis of a combinatorial code that allows animals to detect and discriminate many more odorants than the actual number of receptor types that they express. One drawback is that high odor concentrations recruit lower affinity receptors which can lead to the perception of qualitatively different odors. Here we addressed the contribution that signal-processing in the antennal lobe makes to reduce concentration dependence in odor representation. By means of calcium imaging and pharmacological approach we describe the contribution that GABA receptors play in terms of the amplitude and temporal profiles of the signals that convey odor information from the antennal lobes to higher brain centers. We found that GABA reduces the amplitude of odor elicited signals and the number of glomeruli that are recruited in an odor-concentration-dependent manner. Blocking GABA receptors decreases the correlation among glomerular activity patterns elicited by different concentrations of the same odor. In addition, we built a realistic mathematical model of the antennal lobe that was used to test the viability of the proposed mechanisms and to evaluate the processing properties of the AL network under conditions that cannot be achieved in physiology experiments. Interestingly, even though based on a rather simple topology and cell interactions solely mediated by GABAergic lateral inhibitions, the AL model reproduced key features of the AL response upon different odor concentrations and provides plausible solutions for concentration invariant recognition of odors by artificial sensors.</description><subject>Activity patterns</subject><subject>Amplitudes</subject><subject>Animals</subject><subject>Antennal lobe</subject><subject>Bees</subject><subject>Biology and Life Sciences</subject><subject>Calcium imaging</subject><subject>Cell interactions</subject><subject>Combinatorial analysis</subject><subject>GABA</subject><subject>Mathematical models</subject><subject>Network topologies</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Odorant receptors</subject><subject>Odorants</subject><subject>Odors</subject><subject>Olfactory Pathways - physiology</subject><subject>Olfactory Receptor Neurons - physiology</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Receptive field</subject><subject>Receptors</subject><subject>Receptors, GABA</subject><subject>Receptors, Odorant - metabolism</subject><subject>Signal processing</subject><subject>Smell - physiology</subject><subject>Social Sciences</subject><subject>Topology</subject><subject>γ-Aminobutyric acid</subject><subject>γ-Aminobutyric acid receptors</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvgHyBYiQscEvy53j2hqoISqYDEx9ma9Y6Dw8YO9m4h_x6HbKsG9YJ88Gj8zGvP6ymKp5QsKFf09TqM0UO_2JrWLSihlKrqXnFKpeRzxWV9_1Z8UjxKaU1IDpvqYXHCFRecsOa0-HABzpeb0I09DC74EnxXhi7E0gRv0A_xkHb-CqKDnMphiRD7XRl6C2YIcVd6HH6F-CM9Lh5Y6BM-mfZZ8e3d26_n7-eXny6W52eXc1NROsybilQgUakGLaDq2loY1iCvrWp5VaMBUUlhBZPGQmvQKGUYtJYTU8uacD4rnh90t31IenIiaVbzmnMhG5qJ5YHoAqz1NroNxJ0O4PTfRIgrDXFwpkdNGkmRMWKAoLDcQnaGI5MoJDFVjmfFm-m2sd1gd3ClPxI9PvHuu16FK00Jp4pxmRVeTgox_BwxDXrjksG-B49h3D-c1UoJyURGX_yD3t3eRK0gd-C8DflisxfVZ0pWnFAl91qLO6i8Oty4_L9oXc4fFbw6KsjMgL-HFYwp6eWXz__BfjxmxYE1MaQU0d6YR4neT_N1k3o_zXqa5lz27LbxN0XX48v_ABb48BQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Marachlian, Emiliano</creator><creator>Huerta, Ramón</creator><creator>Locatelli, Fernando F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9826-5696</orcidid><orcidid>https://orcid.org/0000-0002-8415-8264</orcidid></search><sort><creationdate>20230601</creationdate><title>Gain modulation and odor concentration invariance in early olfactory networks</title><author>Marachlian, Emiliano ; Huerta, Ramón ; Locatelli, Fernando F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-9606a5e779efae7db84c29e38f7b368eca4654f425cfabcec77c2abf30c858033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activity patterns</topic><topic>Amplitudes</topic><topic>Animals</topic><topic>Antennal lobe</topic><topic>Bees</topic><topic>Biology and Life Sciences</topic><topic>Calcium imaging</topic><topic>Cell interactions</topic><topic>Combinatorial analysis</topic><topic>GABA</topic><topic>Mathematical models</topic><topic>Network topologies</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Odorant receptors</topic><topic>Odorants</topic><topic>Odors</topic><topic>Olfactory Pathways - physiology</topic><topic>Olfactory Receptor Neurons - physiology</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Receptive field</topic><topic>Receptors</topic><topic>Receptors, GABA</topic><topic>Receptors, Odorant - metabolism</topic><topic>Signal processing</topic><topic>Smell - physiology</topic><topic>Social Sciences</topic><topic>Topology</topic><topic>γ-Aminobutyric acid</topic><topic>γ-Aminobutyric acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marachlian, Emiliano</creatorcontrib><creatorcontrib>Huerta, Ramón</creatorcontrib><creatorcontrib>Locatelli, Fernando F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marachlian, Emiliano</au><au>Huerta, Ramón</au><au>Locatelli, Fernando F</au><au>van Vugt, Marieke Karlijn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gain modulation and odor concentration invariance in early olfactory networks</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>19</volume><issue>6</issue><spage>e1011176</spage><epage>e1011176</epage><pages>e1011176-e1011176</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The broad receptive field of the olfactory receptors constitutes the basis of a combinatorial code that allows animals to detect and discriminate many more odorants than the actual number of receptor types that they express. One drawback is that high odor concentrations recruit lower affinity receptors which can lead to the perception of qualitatively different odors. Here we addressed the contribution that signal-processing in the antennal lobe makes to reduce concentration dependence in odor representation. By means of calcium imaging and pharmacological approach we describe the contribution that GABA receptors play in terms of the amplitude and temporal profiles of the signals that convey odor information from the antennal lobes to higher brain centers. We found that GABA reduces the amplitude of odor elicited signals and the number of glomeruli that are recruited in an odor-concentration-dependent manner. Blocking GABA receptors decreases the correlation among glomerular activity patterns elicited by different concentrations of the same odor. In addition, we built a realistic mathematical model of the antennal lobe that was used to test the viability of the proposed mechanisms and to evaluate the processing properties of the AL network under conditions that cannot be achieved in physiology experiments. Interestingly, even though based on a rather simple topology and cell interactions solely mediated by GABAergic lateral inhibitions, the AL model reproduced key features of the AL response upon different odor concentrations and provides plausible solutions for concentration invariant recognition of odors by artificial sensors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37343029</pmid><doi>10.1371/journal.pcbi.1011176</doi><tpages>e1011176</tpages><orcidid>https://orcid.org/0000-0001-9826-5696</orcidid><orcidid>https://orcid.org/0000-0002-8415-8264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2023-06, Vol.19 (6), p.e1011176-e1011176
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2838334591
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Activity patterns
Amplitudes
Animals
Antennal lobe
Bees
Biology and Life Sciences
Calcium imaging
Cell interactions
Combinatorial analysis
GABA
Mathematical models
Network topologies
Neuroimaging
Neurons
Odorant receptors
Odorants
Odors
Olfactory Pathways - physiology
Olfactory Receptor Neurons - physiology
Physical Sciences
Physiology
Receptive field
Receptors
Receptors, GABA
Receptors, Odorant - metabolism
Signal processing
Smell - physiology
Social Sciences
Topology
γ-Aminobutyric acid
γ-Aminobutyric acid receptors
title Gain modulation and odor concentration invariance in early olfactory networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gain%20modulation%20and%20odor%20concentration%20invariance%20in%20early%20olfactory%20networks&rft.jtitle=PLoS%20computational%20biology&rft.au=Marachlian,%20Emiliano&rft.date=2023-06-01&rft.volume=19&rft.issue=6&rft.spage=e1011176&rft.epage=e1011176&rft.pages=e1011176-e1011176&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011176&rft_dat=%3Cgale_plos_%3EA756301754%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838334591&rft_id=info:pmid/37343029&rft_galeid=A756301754&rft_doaj_id=oai_doaj_org_article_0951e220ca0e4f3fa3023e25e450c602&rfr_iscdi=true