Mechanisms of human dynamic object recognition revealed by sequential deep neural networks

Humans can quickly recognize objects in a dynamically changing world. This ability is showcased by the fact that observers succeed at recognizing objects in rapidly changing image sequences, at up to 13 ms/image. To date, the mechanisms that govern dynamic object recognition remain poorly understood...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2023-06, Vol.19 (6), p.e1011169-e1011169
Hauptverfasser: Sörensen, Lynn K A, Bohté, Sander M, de Jong, Dorina, Slagter, Heleen A, Scholte, H Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1011169
container_issue 6
container_start_page e1011169
container_title PLoS computational biology
container_volume 19
creator Sörensen, Lynn K A
Bohté, Sander M
de Jong, Dorina
Slagter, Heleen A
Scholte, H Steven
description Humans can quickly recognize objects in a dynamically changing world. This ability is showcased by the fact that observers succeed at recognizing objects in rapidly changing image sequences, at up to 13 ms/image. To date, the mechanisms that govern dynamic object recognition remain poorly understood. Here, we developed deep learning models for dynamic recognition and compared different computational mechanisms, contrasting feedforward and recurrent, single-image and sequential processing as well as different forms of adaptation. We found that only models that integrate images sequentially via lateral recurrence mirrored human performance (N = 36) and were predictive of trial-by-trial responses across image durations (13-80 ms/image). Importantly, models with sequential lateral-recurrent integration also captured how human performance changes as a function of image presentation durations, with models processing images for a few time steps capturing human object recognition at shorter presentation durations and models processing images for more time steps capturing human object recognition at longer presentation durations. Furthermore, augmenting such a recurrent model with adaptation markedly improved dynamic recognition performance and accelerated its representational dynamics, thereby predicting human trial-by-trial responses using fewer processing resources. Together, these findings provide new insights into the mechanisms rendering object recognition so fast and effective in a dynamic visual world.
doi_str_mv 10.1371/journal.pcbi.1011169
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2838334321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A756300680</galeid><doaj_id>oai_doaj_org_article_6ea94088825c41adb611f22daaaa2764</doaj_id><sourcerecordid>A756300680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-baa4bbe5c3107a0f3dc903f89e8c764ec9776de2f463fa7deedf9f1ab2a1f4323</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXezYcZITqioeKxWQeFy4WBN7vOslsRc7Key3x2HTqou4YB88Gv_m4b8nyx5TsqSsoi-3fgwOuuVOtXZJCaVUNHeyU1qWbFGxsr57yz7JHsS4JSSZjbifnbCqaHjNyGn27T2qDTgb-5h7k2_GHlyu9w56q3LfblENeUDl184O1rtkXyF0qPN2n0f8MaIbLHS5RtzlDseQbIfDTx--x4fZPQNdxEfzeZZ9ffP6y8W7xeXHt6uL88uFEowPixaAty2WilFSATFMq4YwUzdYq0pwVE1VCY2F4YIZqFIlbRpDoS2AGs4KdpY9PeTddT7KWZYoi5rVjCWAJmJ1ILSHrdwF20PYSw9W_nH4sJYQBqs6lAKh4aSu66JUnIJuBaWmKDSkVaR2Uq5Xc7Wx7VGrJEB69FHS4xtnN3LtryQljAjaTN08nzMEnwSMg-xtVNh14NCPU-MFF01Z8gl99hf67-ctD9Q6_Yy0zvhUWKWtMf2id2hs8p9XpWCEiJqkgBdHAYkZ8NewhjFGufr86T_YD8csP7Aq-BgDmhtZKJHT0F63L6ehlfPQprAntyW9CbqeUvYbwj3qUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838334321</pqid></control><display><type>article</type><title>Mechanisms of human dynamic object recognition revealed by sequential deep neural networks</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sörensen, Lynn K A ; Bohté, Sander M ; de Jong, Dorina ; Slagter, Heleen A ; Scholte, H Steven</creator><contributor>Louis, Matthieu</contributor><creatorcontrib>Sörensen, Lynn K A ; Bohté, Sander M ; de Jong, Dorina ; Slagter, Heleen A ; Scholte, H Steven ; Louis, Matthieu</creatorcontrib><description>Humans can quickly recognize objects in a dynamically changing world. This ability is showcased by the fact that observers succeed at recognizing objects in rapidly changing image sequences, at up to 13 ms/image. To date, the mechanisms that govern dynamic object recognition remain poorly understood. Here, we developed deep learning models for dynamic recognition and compared different computational mechanisms, contrasting feedforward and recurrent, single-image and sequential processing as well as different forms of adaptation. We found that only models that integrate images sequentially via lateral recurrence mirrored human performance (N = 36) and were predictive of trial-by-trial responses across image durations (13-80 ms/image). Importantly, models with sequential lateral-recurrent integration also captured how human performance changes as a function of image presentation durations, with models processing images for a few time steps capturing human object recognition at shorter presentation durations and models processing images for more time steps capturing human object recognition at longer presentation durations. Furthermore, augmenting such a recurrent model with adaptation markedly improved dynamic recognition performance and accelerated its representational dynamics, thereby predicting human trial-by-trial responses using fewer processing resources. Together, these findings provide new insights into the mechanisms rendering object recognition so fast and effective in a dynamic visual world.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011169</identifier><identifier>PMID: 37294830</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Analysis ; Artificial neural networks ; Biology and Life Sciences ; Comparative analysis ; Computer and Information Sciences ; Deep learning ; Engineering and Technology ; Evaluation ; Human performance ; Machine learning ; Methods ; Neural networks ; Object recognition ; Pattern recognition ; Rapid serial visual presentation ; Social Sciences</subject><ispartof>PLoS computational biology, 2023-06, Vol.19 (6), p.e1011169-e1011169</ispartof><rights>Copyright: © 2023 Sörensen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Sörensen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Sörensen et al 2023 Sörensen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-baa4bbe5c3107a0f3dc903f89e8c764ec9776de2f463fa7deedf9f1ab2a1f4323</citedby><cites>FETCH-LOGICAL-c634t-baa4bbe5c3107a0f3dc903f89e8c764ec9776de2f463fa7deedf9f1ab2a1f4323</cites><orcidid>0000-0002-5560-6486 ; 0000-0002-9839-1788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10306191/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10306191/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37294830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Louis, Matthieu</contributor><creatorcontrib>Sörensen, Lynn K A</creatorcontrib><creatorcontrib>Bohté, Sander M</creatorcontrib><creatorcontrib>de Jong, Dorina</creatorcontrib><creatorcontrib>Slagter, Heleen A</creatorcontrib><creatorcontrib>Scholte, H Steven</creatorcontrib><title>Mechanisms of human dynamic object recognition revealed by sequential deep neural networks</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Humans can quickly recognize objects in a dynamically changing world. This ability is showcased by the fact that observers succeed at recognizing objects in rapidly changing image sequences, at up to 13 ms/image. To date, the mechanisms that govern dynamic object recognition remain poorly understood. Here, we developed deep learning models for dynamic recognition and compared different computational mechanisms, contrasting feedforward and recurrent, single-image and sequential processing as well as different forms of adaptation. We found that only models that integrate images sequentially via lateral recurrence mirrored human performance (N = 36) and were predictive of trial-by-trial responses across image durations (13-80 ms/image). Importantly, models with sequential lateral-recurrent integration also captured how human performance changes as a function of image presentation durations, with models processing images for a few time steps capturing human object recognition at shorter presentation durations and models processing images for more time steps capturing human object recognition at longer presentation durations. Furthermore, augmenting such a recurrent model with adaptation markedly improved dynamic recognition performance and accelerated its representational dynamics, thereby predicting human trial-by-trial responses using fewer processing resources. Together, these findings provide new insights into the mechanisms rendering object recognition so fast and effective in a dynamic visual world.</description><subject>Adaptation</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>Comparative analysis</subject><subject>Computer and Information Sciences</subject><subject>Deep learning</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Human performance</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Rapid serial visual presentation</subject><subject>Social Sciences</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXezYcZITqioeKxWQeFy4WBN7vOslsRc7Key3x2HTqou4YB88Gv_m4b8nyx5TsqSsoi-3fgwOuuVOtXZJCaVUNHeyU1qWbFGxsr57yz7JHsS4JSSZjbifnbCqaHjNyGn27T2qDTgb-5h7k2_GHlyu9w56q3LfblENeUDl184O1rtkXyF0qPN2n0f8MaIbLHS5RtzlDseQbIfDTx--x4fZPQNdxEfzeZZ9ffP6y8W7xeXHt6uL88uFEowPixaAty2WilFSATFMq4YwUzdYq0pwVE1VCY2F4YIZqFIlbRpDoS2AGs4KdpY9PeTddT7KWZYoi5rVjCWAJmJ1ILSHrdwF20PYSw9W_nH4sJYQBqs6lAKh4aSu66JUnIJuBaWmKDSkVaR2Uq5Xc7Wx7VGrJEB69FHS4xtnN3LtryQljAjaTN08nzMEnwSMg-xtVNh14NCPU-MFF01Z8gl99hf67-ctD9Q6_Yy0zvhUWKWtMf2id2hs8p9XpWCEiJqkgBdHAYkZ8NewhjFGufr86T_YD8csP7Aq-BgDmhtZKJHT0F63L6ehlfPQprAntyW9CbqeUvYbwj3qUA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Sörensen, Lynn K A</creator><creator>Bohté, Sander M</creator><creator>de Jong, Dorina</creator><creator>Slagter, Heleen A</creator><creator>Scholte, H Steven</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5560-6486</orcidid><orcidid>https://orcid.org/0000-0002-9839-1788</orcidid></search><sort><creationdate>20230601</creationdate><title>Mechanisms of human dynamic object recognition revealed by sequential deep neural networks</title><author>Sörensen, Lynn K A ; Bohté, Sander M ; de Jong, Dorina ; Slagter, Heleen A ; Scholte, H Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-baa4bbe5c3107a0f3dc903f89e8c764ec9776de2f463fa7deedf9f1ab2a1f4323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>Comparative analysis</topic><topic>Computer and Information Sciences</topic><topic>Deep learning</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Human performance</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Rapid serial visual presentation</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sörensen, Lynn K A</creatorcontrib><creatorcontrib>Bohté, Sander M</creatorcontrib><creatorcontrib>de Jong, Dorina</creatorcontrib><creatorcontrib>Slagter, Heleen A</creatorcontrib><creatorcontrib>Scholte, H Steven</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sörensen, Lynn K A</au><au>Bohté, Sander M</au><au>de Jong, Dorina</au><au>Slagter, Heleen A</au><au>Scholte, H Steven</au><au>Louis, Matthieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of human dynamic object recognition revealed by sequential deep neural networks</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>19</volume><issue>6</issue><spage>e1011169</spage><epage>e1011169</epage><pages>e1011169-e1011169</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Humans can quickly recognize objects in a dynamically changing world. This ability is showcased by the fact that observers succeed at recognizing objects in rapidly changing image sequences, at up to 13 ms/image. To date, the mechanisms that govern dynamic object recognition remain poorly understood. Here, we developed deep learning models for dynamic recognition and compared different computational mechanisms, contrasting feedforward and recurrent, single-image and sequential processing as well as different forms of adaptation. We found that only models that integrate images sequentially via lateral recurrence mirrored human performance (N = 36) and were predictive of trial-by-trial responses across image durations (13-80 ms/image). Importantly, models with sequential lateral-recurrent integration also captured how human performance changes as a function of image presentation durations, with models processing images for a few time steps capturing human object recognition at shorter presentation durations and models processing images for more time steps capturing human object recognition at longer presentation durations. Furthermore, augmenting such a recurrent model with adaptation markedly improved dynamic recognition performance and accelerated its representational dynamics, thereby predicting human trial-by-trial responses using fewer processing resources. Together, these findings provide new insights into the mechanisms rendering object recognition so fast and effective in a dynamic visual world.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37294830</pmid><doi>10.1371/journal.pcbi.1011169</doi><tpages>e1011169</tpages><orcidid>https://orcid.org/0000-0002-5560-6486</orcidid><orcidid>https://orcid.org/0000-0002-9839-1788</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2023-06, Vol.19 (6), p.e1011169-e1011169
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2838334321
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adaptation
Analysis
Artificial neural networks
Biology and Life Sciences
Comparative analysis
Computer and Information Sciences
Deep learning
Engineering and Technology
Evaluation
Human performance
Machine learning
Methods
Neural networks
Object recognition
Pattern recognition
Rapid serial visual presentation
Social Sciences
title Mechanisms of human dynamic object recognition revealed by sequential deep neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20human%20dynamic%20object%20recognition%20revealed%20by%20sequential%20deep%20neural%20networks&rft.jtitle=PLoS%20computational%20biology&rft.au=S%C3%B6rensen,%20Lynn%20K%20A&rft.date=2023-06-01&rft.volume=19&rft.issue=6&rft.spage=e1011169&rft.epage=e1011169&rft.pages=e1011169-e1011169&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011169&rft_dat=%3Cgale_plos_%3EA756300680%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838334321&rft_id=info:pmid/37294830&rft_galeid=A756300680&rft_doaj_id=oai_doaj_org_article_6ea94088825c41adb611f22daaaa2764&rfr_iscdi=true