Multivariate regression modelling for gender prediction using volatile organic compounds from hand odor profiles via HS-SPME-GC-MS
The efficacy of using human volatile organic compounds (VOCs) as a form of forensic evidence has been well demonstrated with canines for crime scene response, suspect identification, and location checking. Although the use of human scent evidence in the field is well established, the laboratory eval...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-07, Vol.18 (7), p.e0286452-e0286452 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0286452 |
---|---|
container_issue | 7 |
container_start_page | e0286452 |
container_title | PloS one |
container_volume | 18 |
creator | Frazier, Chantrell J G Gokool, Vidia A Holness, Howard K Mills, DeEtta K Furton, Kenneth G |
description | The efficacy of using human volatile organic compounds (VOCs) as a form of forensic evidence has been well demonstrated with canines for crime scene response, suspect identification, and location checking. Although the use of human scent evidence in the field is well established, the laboratory evaluation of human VOC profiles has been limited. This study used Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) to analyze human hand odor samples collected from 60 individuals (30 Females and 30 Males). The human volatiles collected from the palm surfaces of each subject were interpreted for classification and prediction of gender. The volatile organic compound (VOC) signatures from subjects' hand odor profiles were evaluated with supervised dimensional reduction techniques: Partial Least Squares-Discriminant Analysis (PLS-DA), Orthogonal-Projections to Latent Structures Discriminant Analysis (OPLS-DA), and Linear Discriminant Analysis (LDA). The PLS-DA 2D model demonstrated clustering amongst male and female subjects. The addition of a third component to the PLS-DA model revealed clustering and minimal separation of male and female subjects in the 3D PLS-DA model. The OPLS-DA model displayed discrimination and clustering amongst gender groups with leave one out cross validation (LOOCV) and 95% confidence regions surrounding clustered groups without overlap. The LDA had a 96.67% accuracy rate for female and male subjects. The culminating knowledge establishes a working model for the prediction of donor class characteristics using human scent hand odor profiles. |
doi_str_mv | 10.1371/journal.pone.0286452 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2833614289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755923282</galeid><doaj_id>oai_doaj_org_article_043536daa4374eeca41d682b05eb79c4</doaj_id><sourcerecordid>A755923282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c720t-f1345e50a4b333b02f7b44b9406fa080bb48a484a5057246314d4feecc5189cb3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEICE4ZPFXvk6oWpV2pa6KWOBqOc4k61ViL7azgiu_HKebVruoB5RDIs8z73jmzUTRS4xmmOb448YMVotutjUaZogUGUvJo-gUl5QkGUH08cH3SfTMuQ1CKS2y7Gl0QnOG0jIvT6M_y6HzaiesEh5iC60F55TRcW9q6Dql27gxNm5B12DjrYVaST_GBzfGdqYTXnUQG9sKrWQsTb81g65d3FjTx2uh69jUZkw1TQBdvFMivlolqy_Li-RynixXz6MnjegcvJjeZ9H3zxff5lfJ9c3lYn5-ncicIJ80mLIUUiRYRSmtEGnyirGqZChrBCpQVbFCsIKJFKU5YRnFrGYNgJQpLkpZ0bPo9V532xnHp_E5TgpKM8xIUQZisSdqIzZ8a1Uv7G9uhOK3B6FHLqxXsgOOGE1pVgvBwixDEcFwnRWkQilUeSlZ0Po0VRuqHmoJ2lvRHYkeR7Ra89bsOEaU4IzhoPBmr2CcV9xJ5UGupdEapOckmIlYHqD3Uxlrfg7gPO-Vk8E5ocEMt90xhIImDejbf9CHZzBRrQhtKt2YcDs5ivLzPE1LQklBAjV7gApPDb0Kd4TR6-OED0cJgfHwy7dicI4vVl__n735ccy-O2DXIDq_dqYbxn_UHYNsD0prnLPQ3FuBER8X6m4afFwoPi1USHt1aON90t0G0b84ABq7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833614289</pqid></control><display><type>article</type><title>Multivariate regression modelling for gender prediction using volatile organic compounds from hand odor profiles via HS-SPME-GC-MS</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Frazier, Chantrell J G ; Gokool, Vidia A ; Holness, Howard K ; Mills, DeEtta K ; Furton, Kenneth G</creator><contributor>Lomonaco, Tommaso</contributor><creatorcontrib>Frazier, Chantrell J G ; Gokool, Vidia A ; Holness, Howard K ; Mills, DeEtta K ; Furton, Kenneth G ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; Lomonaco, Tommaso</creatorcontrib><description>The efficacy of using human volatile organic compounds (VOCs) as a form of forensic evidence has been well demonstrated with canines for crime scene response, suspect identification, and location checking. Although the use of human scent evidence in the field is well established, the laboratory evaluation of human VOC profiles has been limited. This study used Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) to analyze human hand odor samples collected from 60 individuals (30 Females and 30 Males). The human volatiles collected from the palm surfaces of each subject were interpreted for classification and prediction of gender. The volatile organic compound (VOC) signatures from subjects' hand odor profiles were evaluated with supervised dimensional reduction techniques: Partial Least Squares-Discriminant Analysis (PLS-DA), Orthogonal-Projections to Latent Structures Discriminant Analysis (OPLS-DA), and Linear Discriminant Analysis (LDA). The PLS-DA 2D model demonstrated clustering amongst male and female subjects. The addition of a third component to the PLS-DA model revealed clustering and minimal separation of male and female subjects in the 3D PLS-DA model. The OPLS-DA model displayed discrimination and clustering amongst gender groups with leave one out cross validation (LOOCV) and 95% confidence regions surrounding clustered groups without overlap. The LDA had a 96.67% accuracy rate for female and male subjects. The culminating knowledge establishes a working model for the prediction of donor class characteristics using human scent hand odor profiles.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0286452</identifier><identifier>PMID: 37405979</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Aroma compounds ; BASIC BIOLOGICAL SCIENCES ; Biology and Life Sciences ; chemistry ; Clustering ; Computer and Information Sciences ; computer software ; Cotton ; Discriminant Analysis ; Dogs ; Engineering and Technology ; Ethnicity ; Evaluation ; Female ; Females ; Forensic science ; forensics ; Gas chromatography ; gas chromatography-mass spectrometry ; Gas Chromatography-Mass Spectrometry - methods ; Gender ; Hands ; Headspace ; Humans ; Hypotheses ; Investigations ; linear discriminant analysis ; major histocompatibility complex ; Male ; Males ; Mass spectrometry ; Mass spectroscopy ; Medicine and Health Sciences ; Metabolites ; Methods ; Microbiota ; Modelling ; Odorants - analysis ; Odors ; Olfactory discrimination ; Olfactory discrimination learning ; Organic compounds ; Peptides ; Physical Sciences ; Physiology ; Predictions ; Research and Analysis Methods ; Sex discrimination ; Skin ; skin physiology ; Solid phase methods ; Solid Phase Microextraction - methods ; Solid phases ; Three dimensional models ; Two dimensional analysis ; Two dimensional models ; VOCs ; Volatile compounds ; Volatile organic compounds ; Volatile Organic Compounds - analysis ; Volatiles</subject><ispartof>PloS one, 2023-07, Vol.18 (7), p.e0286452-e0286452</ispartof><rights>Copyright: © 2023 Frazier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Frazier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Frazier et al 2023 Frazier et al</rights><rights>2023 Frazier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c720t-f1345e50a4b333b02f7b44b9406fa080bb48a484a5057246314d4feecc5189cb3</citedby><cites>FETCH-LOGICAL-c720t-f1345e50a4b333b02f7b44b9406fa080bb48a484a5057246314d4feecc5189cb3</cites><orcidid>0000-0002-9977-7834 ; 0000-0003-0838-0530 ; 0000-0003-1867-1761 ; 0000-0002-9629-049X ; 0000-0003-2941-2597 ; 0000000318671761 ; 0000000299777834 ; 000000029629049X ; 0000000329412597 ; 0000000308380530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321641/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321641/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37405979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2005047$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Lomonaco, Tommaso</contributor><creatorcontrib>Frazier, Chantrell J G</creatorcontrib><creatorcontrib>Gokool, Vidia A</creatorcontrib><creatorcontrib>Holness, Howard K</creatorcontrib><creatorcontrib>Mills, DeEtta K</creatorcontrib><creatorcontrib>Furton, Kenneth G</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Multivariate regression modelling for gender prediction using volatile organic compounds from hand odor profiles via HS-SPME-GC-MS</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The efficacy of using human volatile organic compounds (VOCs) as a form of forensic evidence has been well demonstrated with canines for crime scene response, suspect identification, and location checking. Although the use of human scent evidence in the field is well established, the laboratory evaluation of human VOC profiles has been limited. This study used Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) to analyze human hand odor samples collected from 60 individuals (30 Females and 30 Males). The human volatiles collected from the palm surfaces of each subject were interpreted for classification and prediction of gender. The volatile organic compound (VOC) signatures from subjects' hand odor profiles were evaluated with supervised dimensional reduction techniques: Partial Least Squares-Discriminant Analysis (PLS-DA), Orthogonal-Projections to Latent Structures Discriminant Analysis (OPLS-DA), and Linear Discriminant Analysis (LDA). The PLS-DA 2D model demonstrated clustering amongst male and female subjects. The addition of a third component to the PLS-DA model revealed clustering and minimal separation of male and female subjects in the 3D PLS-DA model. The OPLS-DA model displayed discrimination and clustering amongst gender groups with leave one out cross validation (LOOCV) and 95% confidence regions surrounding clustered groups without overlap. The LDA had a 96.67% accuracy rate for female and male subjects. The culminating knowledge establishes a working model for the prediction of donor class characteristics using human scent hand odor profiles.</description><subject>Analysis</subject><subject>Animals</subject><subject>Aroma compounds</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biology and Life Sciences</subject><subject>chemistry</subject><subject>Clustering</subject><subject>Computer and Information Sciences</subject><subject>computer software</subject><subject>Cotton</subject><subject>Discriminant Analysis</subject><subject>Dogs</subject><subject>Engineering and Technology</subject><subject>Ethnicity</subject><subject>Evaluation</subject><subject>Female</subject><subject>Females</subject><subject>Forensic science</subject><subject>forensics</subject><subject>Gas chromatography</subject><subject>gas chromatography-mass spectrometry</subject><subject>Gas Chromatography-Mass Spectrometry - methods</subject><subject>Gender</subject><subject>Hands</subject><subject>Headspace</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Investigations</subject><subject>linear discriminant analysis</subject><subject>major histocompatibility complex</subject><subject>Male</subject><subject>Males</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medicine and Health Sciences</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Microbiota</subject><subject>Modelling</subject><subject>Odorants - analysis</subject><subject>Odors</subject><subject>Olfactory discrimination</subject><subject>Olfactory discrimination learning</subject><subject>Organic compounds</subject><subject>Peptides</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Predictions</subject><subject>Research and Analysis Methods</subject><subject>Sex discrimination</subject><subject>Skin</subject><subject>skin physiology</subject><subject>Solid phase methods</subject><subject>Solid Phase Microextraction - methods</subject><subject>Solid phases</subject><subject>Three dimensional models</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><subject>VOCs</subject><subject>Volatile compounds</subject><subject>Volatile organic compounds</subject><subject>Volatile Organic Compounds - analysis</subject><subject>Volatiles</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEICE4ZPFXvk6oWpV2pa6KWOBqOc4k61ViL7azgiu_HKebVruoB5RDIs8z73jmzUTRS4xmmOb448YMVotutjUaZogUGUvJo-gUl5QkGUH08cH3SfTMuQ1CKS2y7Gl0QnOG0jIvT6M_y6HzaiesEh5iC60F55TRcW9q6Dql27gxNm5B12DjrYVaST_GBzfGdqYTXnUQG9sKrWQsTb81g65d3FjTx2uh69jUZkw1TQBdvFMivlolqy_Li-RynixXz6MnjegcvJjeZ9H3zxff5lfJ9c3lYn5-ncicIJ80mLIUUiRYRSmtEGnyirGqZChrBCpQVbFCsIKJFKU5YRnFrGYNgJQpLkpZ0bPo9V532xnHp_E5TgpKM8xIUQZisSdqIzZ8a1Uv7G9uhOK3B6FHLqxXsgOOGE1pVgvBwixDEcFwnRWkQilUeSlZ0Po0VRuqHmoJ2lvRHYkeR7Ra89bsOEaU4IzhoPBmr2CcV9xJ5UGupdEapOckmIlYHqD3Uxlrfg7gPO-Vk8E5ocEMt90xhIImDejbf9CHZzBRrQhtKt2YcDs5ivLzPE1LQklBAjV7gApPDb0Kd4TR6-OED0cJgfHwy7dicI4vVl__n735ccy-O2DXIDq_dqYbxn_UHYNsD0prnLPQ3FuBER8X6m4afFwoPi1USHt1aON90t0G0b84ABq7</recordid><startdate>20230705</startdate><enddate>20230705</enddate><creator>Frazier, Chantrell J G</creator><creator>Gokool, Vidia A</creator><creator>Holness, Howard K</creator><creator>Mills, DeEtta K</creator><creator>Furton, Kenneth G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9977-7834</orcidid><orcidid>https://orcid.org/0000-0003-0838-0530</orcidid><orcidid>https://orcid.org/0000-0003-1867-1761</orcidid><orcidid>https://orcid.org/0000-0002-9629-049X</orcidid><orcidid>https://orcid.org/0000-0003-2941-2597</orcidid><orcidid>https://orcid.org/0000000318671761</orcidid><orcidid>https://orcid.org/0000000299777834</orcidid><orcidid>https://orcid.org/000000029629049X</orcidid><orcidid>https://orcid.org/0000000329412597</orcidid><orcidid>https://orcid.org/0000000308380530</orcidid></search><sort><creationdate>20230705</creationdate><title>Multivariate regression modelling for gender prediction using volatile organic compounds from hand odor profiles via HS-SPME-GC-MS</title><author>Frazier, Chantrell J G ; Gokool, Vidia A ; Holness, Howard K ; Mills, DeEtta K ; Furton, Kenneth G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c720t-f1345e50a4b333b02f7b44b9406fa080bb48a484a5057246314d4feecc5189cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Aroma compounds</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biology and Life Sciences</topic><topic>chemistry</topic><topic>Clustering</topic><topic>Computer and Information Sciences</topic><topic>computer software</topic><topic>Cotton</topic><topic>Discriminant Analysis</topic><topic>Dogs</topic><topic>Engineering and Technology</topic><topic>Ethnicity</topic><topic>Evaluation</topic><topic>Female</topic><topic>Females</topic><topic>Forensic science</topic><topic>forensics</topic><topic>Gas chromatography</topic><topic>gas chromatography-mass spectrometry</topic><topic>Gas Chromatography-Mass Spectrometry - methods</topic><topic>Gender</topic><topic>Hands</topic><topic>Headspace</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Investigations</topic><topic>linear discriminant analysis</topic><topic>major histocompatibility complex</topic><topic>Male</topic><topic>Males</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medicine and Health Sciences</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Microbiota</topic><topic>Modelling</topic><topic>Odorants - analysis</topic><topic>Odors</topic><topic>Olfactory discrimination</topic><topic>Olfactory discrimination learning</topic><topic>Organic compounds</topic><topic>Peptides</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Predictions</topic><topic>Research and Analysis Methods</topic><topic>Sex discrimination</topic><topic>Skin</topic><topic>skin physiology</topic><topic>Solid phase methods</topic><topic>Solid Phase Microextraction - methods</topic><topic>Solid phases</topic><topic>Three dimensional models</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><topic>VOCs</topic><topic>Volatile compounds</topic><topic>Volatile organic compounds</topic><topic>Volatile Organic Compounds - analysis</topic><topic>Volatiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frazier, Chantrell J G</creatorcontrib><creatorcontrib>Gokool, Vidia A</creatorcontrib><creatorcontrib>Holness, Howard K</creatorcontrib><creatorcontrib>Mills, DeEtta K</creatorcontrib><creatorcontrib>Furton, Kenneth G</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frazier, Chantrell J G</au><au>Gokool, Vidia A</au><au>Holness, Howard K</au><au>Mills, DeEtta K</au><au>Furton, Kenneth G</au><au>Lomonaco, Tommaso</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate regression modelling for gender prediction using volatile organic compounds from hand odor profiles via HS-SPME-GC-MS</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-07-05</date><risdate>2023</risdate><volume>18</volume><issue>7</issue><spage>e0286452</spage><epage>e0286452</epage><pages>e0286452-e0286452</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The efficacy of using human volatile organic compounds (VOCs) as a form of forensic evidence has been well demonstrated with canines for crime scene response, suspect identification, and location checking. Although the use of human scent evidence in the field is well established, the laboratory evaluation of human VOC profiles has been limited. This study used Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) to analyze human hand odor samples collected from 60 individuals (30 Females and 30 Males). The human volatiles collected from the palm surfaces of each subject were interpreted for classification and prediction of gender. The volatile organic compound (VOC) signatures from subjects' hand odor profiles were evaluated with supervised dimensional reduction techniques: Partial Least Squares-Discriminant Analysis (PLS-DA), Orthogonal-Projections to Latent Structures Discriminant Analysis (OPLS-DA), and Linear Discriminant Analysis (LDA). The PLS-DA 2D model demonstrated clustering amongst male and female subjects. The addition of a third component to the PLS-DA model revealed clustering and minimal separation of male and female subjects in the 3D PLS-DA model. The OPLS-DA model displayed discrimination and clustering amongst gender groups with leave one out cross validation (LOOCV) and 95% confidence regions surrounding clustered groups without overlap. The LDA had a 96.67% accuracy rate for female and male subjects. The culminating knowledge establishes a working model for the prediction of donor class characteristics using human scent hand odor profiles.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37405979</pmid><doi>10.1371/journal.pone.0286452</doi><tpages>e0286452</tpages><orcidid>https://orcid.org/0000-0002-9977-7834</orcidid><orcidid>https://orcid.org/0000-0003-0838-0530</orcidid><orcidid>https://orcid.org/0000-0003-1867-1761</orcidid><orcidid>https://orcid.org/0000-0002-9629-049X</orcidid><orcidid>https://orcid.org/0000-0003-2941-2597</orcidid><orcidid>https://orcid.org/0000000318671761</orcidid><orcidid>https://orcid.org/0000000299777834</orcidid><orcidid>https://orcid.org/000000029629049X</orcidid><orcidid>https://orcid.org/0000000329412597</orcidid><orcidid>https://orcid.org/0000000308380530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-07, Vol.18 (7), p.e0286452-e0286452 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2833614289 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Animals Aroma compounds BASIC BIOLOGICAL SCIENCES Biology and Life Sciences chemistry Clustering Computer and Information Sciences computer software Cotton Discriminant Analysis Dogs Engineering and Technology Ethnicity Evaluation Female Females Forensic science forensics Gas chromatography gas chromatography-mass spectrometry Gas Chromatography-Mass Spectrometry - methods Gender Hands Headspace Humans Hypotheses Investigations linear discriminant analysis major histocompatibility complex Male Males Mass spectrometry Mass spectroscopy Medicine and Health Sciences Metabolites Methods Microbiota Modelling Odorants - analysis Odors Olfactory discrimination Olfactory discrimination learning Organic compounds Peptides Physical Sciences Physiology Predictions Research and Analysis Methods Sex discrimination Skin skin physiology Solid phase methods Solid Phase Microextraction - methods Solid phases Three dimensional models Two dimensional analysis Two dimensional models VOCs Volatile compounds Volatile organic compounds Volatile Organic Compounds - analysis Volatiles |
title | Multivariate regression modelling for gender prediction using volatile organic compounds from hand odor profiles via HS-SPME-GC-MS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20regression%20modelling%20for%20gender%20prediction%20using%20volatile%20organic%20compounds%20from%20hand%20odor%20profiles%20via%20HS-SPME-GC-MS&rft.jtitle=PloS%20one&rft.au=Frazier,%20Chantrell%20J%20G&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2023-07-05&rft.volume=18&rft.issue=7&rft.spage=e0286452&rft.epage=e0286452&rft.pages=e0286452-e0286452&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0286452&rft_dat=%3Cgale_plos_%3EA755923282%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833614289&rft_id=info:pmid/37405979&rft_galeid=A755923282&rft_doaj_id=oai_doaj_org_article_043536daa4374eeca41d682b05eb79c4&rfr_iscdi=true |