Cracking double-blind review: Authorship attribution with deep learning

Double-blind peer review is considered a pillar of academic research because it is perceived to ensure a fair, unbiased, and fact-centered scientific discussion. Yet, experienced researchers can often correctly guess from which research group an anonymous submission originates, biasing the peer-revi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-06, Vol.18 (6), p.e0287611-e0287611
Hauptverfasser: Bauersfeld, Leonard, Romero, Angel, Muglikar, Manasi, Scaramuzza, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0287611
container_issue 6
container_start_page e0287611
container_title PloS one
container_volume 18
creator Bauersfeld, Leonard
Romero, Angel
Muglikar, Manasi
Scaramuzza, Davide
description Double-blind peer review is considered a pillar of academic research because it is perceived to ensure a fair, unbiased, and fact-centered scientific discussion. Yet, experienced researchers can often correctly guess from which research group an anonymous submission originates, biasing the peer-review process. In this work, we present a transformer-based, neural-network architecture that only uses the text content and the author names in the bibliography to attribute an anonymous manuscript to an author. To train and evaluate our method, we created the largest authorship-identification dataset to date. It leverages all research papers publicly available on arXiv amounting to over 2 million manuscripts. In arXiv-subsets with up to 2,000 different authors, our method achieves an unprecedented authorship attribution accuracy, where up to 73% of papers are attributed correctly. We present a scaling analysis to highlight the applicability of the proposed method to even larger datasets when sufficient compute capabilities are more widely available to the academic community. Furthermore, we analyze the attribution accuracy in settings where the goal is to identify all authors of an anonymous manuscript. Thanks to our method, we are not only able to predict the author of an anonymous work but we also provide empirical evidence of the key aspects that make a paper attributable. We have open-sourced the necessary tools to reproduce our experiments.
doi_str_mv 10.1371/journal.pone.0287611
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2831772780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755350394</galeid><doaj_id>oai_doaj_org_article_dc4698c2d3744d2eba74d0ee073b0efe</doaj_id><sourcerecordid>A755350394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693t-18c369af9c4e9f60067071eca5b514a3164615bb0d3f0345f0b9ac97af4a49423</originalsourceid><addsrcrecordid>eNqNkl2P1CAYhRujcdfRf2C0iYnRixmh0FK8MZOJrpNssolft4TSt1NGplSgu_rvZWa6m6nZC0MIBJ5zgJeTJM8xWmDC8LutHVwnzaK3HSxQVrIC4wfJOeYkmxcZIg9P5mfJE--3COWkLIrHyRlhhCPEsvPkYuWk-qm7TVrboTIwr4zu6tTBtYab9-lyCK11vtV9KkNwuhqCtl16o0Ob1gB9akC6LsqfJo8aaTw8G8dZ8v3Tx2-rz_PLq4v1ank5VwUnYY5LRQouG64o8KZAqGCIYVAyr3JMJcEFLXBeVagmDSI0b1DFpeJMNlRSTjMyS14efXtjvRhr4EVWEsxYxkoUifWRqK3cit7pnXR_hJVaHBas2wjpglYGRK1owUuV1YRRWmdQSUZrBIAYqRA0EL0-jKcN1Q5qBV1w0kxMpzudbsXGXguMCCb7PkvejA7O_hrAB7HTXoExsgM7HC6e5QxzziL66h_0_ueN1EbGF-iusfFgtTcVS5bnJEeE00gt7qFiq2GnVUxMo-P6RPB2IohMgN9hIwfvxfrrl_9nr35M2dcnbAvShNZbc4iRn4L0CCpnvXfQ3FUZI7EP_G01xD7wYgx8lL04_aE70W3CyV_Wo_pE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831772780</pqid></control><display><type>article</type><title>Cracking double-blind review: Authorship attribution with deep learning</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Bauersfeld, Leonard ; Romero, Angel ; Muglikar, Manasi ; Scaramuzza, Davide</creator><creatorcontrib>Bauersfeld, Leonard ; Romero, Angel ; Muglikar, Manasi ; Scaramuzza, Davide</creatorcontrib><description>Double-blind peer review is considered a pillar of academic research because it is perceived to ensure a fair, unbiased, and fact-centered scientific discussion. Yet, experienced researchers can often correctly guess from which research group an anonymous submission originates, biasing the peer-review process. In this work, we present a transformer-based, neural-network architecture that only uses the text content and the author names in the bibliography to attribute an anonymous manuscript to an author. To train and evaluate our method, we created the largest authorship-identification dataset to date. It leverages all research papers publicly available on arXiv amounting to over 2 million manuscripts. In arXiv-subsets with up to 2,000 different authors, our method achieves an unprecedented authorship attribution accuracy, where up to 73% of papers are attributed correctly. We present a scaling analysis to highlight the applicability of the proposed method to even larger datasets when sufficient compute capabilities are more widely available to the academic community. Furthermore, we analyze the attribution accuracy in settings where the goal is to identify all authors of an anonymous manuscript. Thanks to our method, we are not only able to predict the author of an anonymous work but we also provide empirical evidence of the key aspects that make a paper attributable. We have open-sourced the necessary tools to reproduce our experiments.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0287611</identifier><identifier>PMID: 37390072</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Analysis ; Authorship ; Benchmarks ; Bibliometrics ; Biology and Life Sciences ; Classification ; Computational linguistics ; Computer and Information Sciences ; Computer architecture ; Datasets ; Deep learning ; Double-blind studies ; Empirical analysis ; Engineering and Technology ; Federalism ; Hate speech ; Information management ; Language processing ; Machine learning ; Medical ethics ; Natural language interfaces ; Natural language processing ; Neural networks ; Peer review ; Research and Analysis Methods ; Research ethics ; Reviews ; Science Policy ; Social Sciences</subject><ispartof>PloS one, 2023-06, Vol.18 (6), p.e0287611-e0287611</ispartof><rights>Copyright: © 2023 Bauersfeld et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Bauersfeld et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Bauersfeld et al 2023 Bauersfeld et al</rights><rights>2023 Bauersfeld et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c693t-18c369af9c4e9f60067071eca5b514a3164615bb0d3f0345f0b9ac97af4a49423</citedby><cites>FETCH-LOGICAL-c693t-18c369af9c4e9f60067071eca5b514a3164615bb0d3f0345f0b9ac97af4a49423</cites><orcidid>0000-0002-5790-9982 ; 0000-0002-7977-7802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313031/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313031/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37390072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauersfeld, Leonard</creatorcontrib><creatorcontrib>Romero, Angel</creatorcontrib><creatorcontrib>Muglikar, Manasi</creatorcontrib><creatorcontrib>Scaramuzza, Davide</creatorcontrib><title>Cracking double-blind review: Authorship attribution with deep learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Double-blind peer review is considered a pillar of academic research because it is perceived to ensure a fair, unbiased, and fact-centered scientific discussion. Yet, experienced researchers can often correctly guess from which research group an anonymous submission originates, biasing the peer-review process. In this work, we present a transformer-based, neural-network architecture that only uses the text content and the author names in the bibliography to attribute an anonymous manuscript to an author. To train and evaluate our method, we created the largest authorship-identification dataset to date. It leverages all research papers publicly available on arXiv amounting to over 2 million manuscripts. In arXiv-subsets with up to 2,000 different authors, our method achieves an unprecedented authorship attribution accuracy, where up to 73% of papers are attributed correctly. We present a scaling analysis to highlight the applicability of the proposed method to even larger datasets when sufficient compute capabilities are more widely available to the academic community. Furthermore, we analyze the attribution accuracy in settings where the goal is to identify all authors of an anonymous manuscript. Thanks to our method, we are not only able to predict the author of an anonymous work but we also provide empirical evidence of the key aspects that make a paper attributable. We have open-sourced the necessary tools to reproduce our experiments.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Authorship</subject><subject>Benchmarks</subject><subject>Bibliometrics</subject><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Computational linguistics</subject><subject>Computer and Information Sciences</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Double-blind studies</subject><subject>Empirical analysis</subject><subject>Engineering and Technology</subject><subject>Federalism</subject><subject>Hate speech</subject><subject>Information management</subject><subject>Language processing</subject><subject>Machine learning</subject><subject>Medical ethics</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Peer review</subject><subject>Research and Analysis Methods</subject><subject>Research ethics</subject><subject>Reviews</subject><subject>Science Policy</subject><subject>Social Sciences</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2P1CAYhRujcdfRf2C0iYnRixmh0FK8MZOJrpNssolft4TSt1NGplSgu_rvZWa6m6nZC0MIBJ5zgJeTJM8xWmDC8LutHVwnzaK3HSxQVrIC4wfJOeYkmxcZIg9P5mfJE--3COWkLIrHyRlhhCPEsvPkYuWk-qm7TVrboTIwr4zu6tTBtYab9-lyCK11vtV9KkNwuhqCtl16o0Ob1gB9akC6LsqfJo8aaTw8G8dZ8v3Tx2-rz_PLq4v1ank5VwUnYY5LRQouG64o8KZAqGCIYVAyr3JMJcEFLXBeVagmDSI0b1DFpeJMNlRSTjMyS14efXtjvRhr4EVWEsxYxkoUifWRqK3cit7pnXR_hJVaHBas2wjpglYGRK1owUuV1YRRWmdQSUZrBIAYqRA0EL0-jKcN1Q5qBV1w0kxMpzudbsXGXguMCCb7PkvejA7O_hrAB7HTXoExsgM7HC6e5QxzziL66h_0_ueN1EbGF-iusfFgtTcVS5bnJEeE00gt7qFiq2GnVUxMo-P6RPB2IohMgN9hIwfvxfrrl_9nr35M2dcnbAvShNZbc4iRn4L0CCpnvXfQ3FUZI7EP_G01xD7wYgx8lL04_aE70W3CyV_Wo_pE</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Bauersfeld, Leonard</creator><creator>Romero, Angel</creator><creator>Muglikar, Manasi</creator><creator>Scaramuzza, Davide</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5790-9982</orcidid><orcidid>https://orcid.org/0000-0002-7977-7802</orcidid></search><sort><creationdate>20230630</creationdate><title>Cracking double-blind review: Authorship attribution with deep learning</title><author>Bauersfeld, Leonard ; Romero, Angel ; Muglikar, Manasi ; Scaramuzza, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693t-18c369af9c4e9f60067071eca5b514a3164615bb0d3f0345f0b9ac97af4a49423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Authorship</topic><topic>Benchmarks</topic><topic>Bibliometrics</topic><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Computational linguistics</topic><topic>Computer and Information Sciences</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Double-blind studies</topic><topic>Empirical analysis</topic><topic>Engineering and Technology</topic><topic>Federalism</topic><topic>Hate speech</topic><topic>Information management</topic><topic>Language processing</topic><topic>Machine learning</topic><topic>Medical ethics</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Peer review</topic><topic>Research and Analysis Methods</topic><topic>Research ethics</topic><topic>Reviews</topic><topic>Science Policy</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauersfeld, Leonard</creatorcontrib><creatorcontrib>Romero, Angel</creatorcontrib><creatorcontrib>Muglikar, Manasi</creatorcontrib><creatorcontrib>Scaramuzza, Davide</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauersfeld, Leonard</au><au>Romero, Angel</au><au>Muglikar, Manasi</au><au>Scaramuzza, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cracking double-blind review: Authorship attribution with deep learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-06-30</date><risdate>2023</risdate><volume>18</volume><issue>6</issue><spage>e0287611</spage><epage>e0287611</epage><pages>e0287611-e0287611</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Double-blind peer review is considered a pillar of academic research because it is perceived to ensure a fair, unbiased, and fact-centered scientific discussion. Yet, experienced researchers can often correctly guess from which research group an anonymous submission originates, biasing the peer-review process. In this work, we present a transformer-based, neural-network architecture that only uses the text content and the author names in the bibliography to attribute an anonymous manuscript to an author. To train and evaluate our method, we created the largest authorship-identification dataset to date. It leverages all research papers publicly available on arXiv amounting to over 2 million manuscripts. In arXiv-subsets with up to 2,000 different authors, our method achieves an unprecedented authorship attribution accuracy, where up to 73% of papers are attributed correctly. We present a scaling analysis to highlight the applicability of the proposed method to even larger datasets when sufficient compute capabilities are more widely available to the academic community. Furthermore, we analyze the attribution accuracy in settings where the goal is to identify all authors of an anonymous manuscript. Thanks to our method, we are not only able to predict the author of an anonymous work but we also provide empirical evidence of the key aspects that make a paper attributable. We have open-sourced the necessary tools to reproduce our experiments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37390072</pmid><doi>10.1371/journal.pone.0287611</doi><tpages>e0287611</tpages><orcidid>https://orcid.org/0000-0002-5790-9982</orcidid><orcidid>https://orcid.org/0000-0002-7977-7802</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-06, Vol.18 (6), p.e0287611-e0287611
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2831772780
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Accuracy
Analysis
Authorship
Benchmarks
Bibliometrics
Biology and Life Sciences
Classification
Computational linguistics
Computer and Information Sciences
Computer architecture
Datasets
Deep learning
Double-blind studies
Empirical analysis
Engineering and Technology
Federalism
Hate speech
Information management
Language processing
Machine learning
Medical ethics
Natural language interfaces
Natural language processing
Neural networks
Peer review
Research and Analysis Methods
Research ethics
Reviews
Science Policy
Social Sciences
title Cracking double-blind review: Authorship attribution with deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cracking%20double-blind%20review:%20Authorship%20attribution%20with%20deep%20learning&rft.jtitle=PloS%20one&rft.au=Bauersfeld,%20Leonard&rft.date=2023-06-30&rft.volume=18&rft.issue=6&rft.spage=e0287611&rft.epage=e0287611&rft.pages=e0287611-e0287611&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0287611&rft_dat=%3Cgale_plos_%3EA755350394%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831772780&rft_id=info:pmid/37390072&rft_galeid=A755350394&rft_doaj_id=oai_doaj_org_article_dc4698c2d3744d2eba74d0ee073b0efe&rfr_iscdi=true