Chemosensory protein regulates the behavioural response of Frankliniella intonsa and Frankliniella occidentalis to tomato zonate spot virus-Infected pepper (Capsicum annuum)
Many herbivorous insects rely on plant volatiles to locate their host plants. Vector-borne viral infections induce changes in plant volatiles, which render infected plants more attractive to insect vectors. However, the detailed mechanisms underlying the olfactory responses of insect vectors induced...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2023-05, Vol.19 (5), p.e1011380-e1011380 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1011380 |
---|---|
container_issue | 5 |
container_start_page | e1011380 |
container_title | PLoS pathogens |
container_volume | 19 |
creator | Li, Heng Chen, Yixin Lu, Chengcong Tian, Houjun Lin, Shuo Wang, Liang Linghu, Tingting Zheng, Xue Wei, Hui Fan, Xiaojing Chen, Yong |
description | Many herbivorous insects rely on plant volatiles to locate their host plants. Vector-borne viral infections induce changes in plant volatiles, which render infected plants more attractive to insect vectors. However, the detailed mechanisms underlying the olfactory responses of insect vectors induced by the volatiles produced by virus-infected plants are poorly understood. Here, we show that volatiles emitted by pepper (Capsicum annuum) plants infected with tomato zonate spot virus (TZSV), particularly the volatile cis-3-hexenal, which is recognized by chemosensory protein 1 of the thrips Frankliniella intonsa (FintCSP1), are more attractive to F. intonsa than the volatiles emitted by non-infected pepper plants. FintCSP1 is highly abundant in the antenna of F. intonsa. Silencing of FintCSP1 significantly decreased electroantennogram responses of F. intonsa antennae to cis-3-hexenal and impaired thrips' responses to TZSV-infected pepper plants and cis-3-hexenal, as assessed using a Y-tube olfactometer. Three-dimensional model predictions indicated that FintCSP1 consists of seven α-helixes and two disulfide bridges. Molecular docking analysis suggested that cis-3-hexenal is positioned deep inside the binding pocket of FintCSP1 and binds to residues of the protein. We combined site-directed mutagenesis and fluorescence binding assays and identified three hydrophilic residues, Lys26, Thr28, and Glu67, of FintCSP1 as being critical for cis-3-hexenal binding. Furthermore, CSP of F. occidentalis (FoccCSP) is also a key olfactory protein involved in modulating the behaviour of F. occidentalis to TZSV-infected pepper. This study revealed the specific binding characteristics of CSPs to cis-3-hexenal and confirmed the general hypothesis that virus infections induce changes in host volatiles, which can be recognized by the olfactory proteins of the insect vector to enhance vector attraction and this may facilitate viral spread and transmission. |
doi_str_mv | 10.1371/journal.ppat.1011380 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2826806077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751605380</galeid><doaj_id>oai_doaj_org_article_c97710b62c8b41c592375fa9b3ee1646</doaj_id><sourcerecordid>A751605380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c662t-ac25f6dfb11a070f9353209598477df0f4cc79e33385c55ca6b82a6f5191bd5b3</originalsourceid><addsrcrecordid>eNqVk89u1DAQxiMEoqXwBggicWkPu9hxbCcnVK0orFSBxJ-z5TiTXZfEDrazorwT78gsu626VS8olhx5fvNN5nMmy15SMqdM0rdXfgpO9_Nx1GlOCaWsIo-yY8o5m0kmy8d33o-yZzFeEVJSRsXT7AjzOZe0OM7-LNYw-Agu-nCdj8EnsC4PsJp6nSDmaQ15A2u9sVhO9xiJo3cRct_lF0G7H711Fvpe59YlDOhcu_ZexBtjW3BJ9xYFPa5B4_bbOyyRo17KNzZMcbZ0HZgEbT7COELITxd6jNZMA4q6aRrOnmdPOt1HeLHfT7LvF--_LT7OLj9_WC7OL2dGiCLNtCl4J9quoVQTSbqacVaQmtdVKWXbka40RtbAGKu44dxo0VSFFh2nNW1a3rCT7PVOd-x9VHunoyqqQlREECmRWO6I1usrNQY76HCtvLbq34EPK6VDsqYHZWopKWlEYaqmpIbXBZO803XDAKgoBWq921ebmgFag1ah1QeihxFn12rlNwpvvS7riqLC6V4h-J8TxKQGG83WfAd-2n44pVygASWib-6hD7e3p1YaO7Cu81jYbEXVueRUEI5_G1LzByh8Whis8Q46i-cHCWcHCcgk-JVWeopRLb9--Q_20yFb7lgTfIwBulvzKFHbablpUm2nRe2nBdNe3TX-NulmPNhfKZQT_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826806077</pqid></control><display><type>article</type><title>Chemosensory protein regulates the behavioural response of Frankliniella intonsa and Frankliniella occidentalis to tomato zonate spot virus-Infected pepper (Capsicum annuum)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Li, Heng ; Chen, Yixin ; Lu, Chengcong ; Tian, Houjun ; Lin, Shuo ; Wang, Liang ; Linghu, Tingting ; Zheng, Xue ; Wei, Hui ; Fan, Xiaojing ; Chen, Yong</creator><contributor>Carr, John P.</contributor><creatorcontrib>Li, Heng ; Chen, Yixin ; Lu, Chengcong ; Tian, Houjun ; Lin, Shuo ; Wang, Liang ; Linghu, Tingting ; Zheng, Xue ; Wei, Hui ; Fan, Xiaojing ; Chen, Yong ; Carr, John P.</creatorcontrib><description>Many herbivorous insects rely on plant volatiles to locate their host plants. Vector-borne viral infections induce changes in plant volatiles, which render infected plants more attractive to insect vectors. However, the detailed mechanisms underlying the olfactory responses of insect vectors induced by the volatiles produced by virus-infected plants are poorly understood. Here, we show that volatiles emitted by pepper (Capsicum annuum) plants infected with tomato zonate spot virus (TZSV), particularly the volatile cis-3-hexenal, which is recognized by chemosensory protein 1 of the thrips Frankliniella intonsa (FintCSP1), are more attractive to F. intonsa than the volatiles emitted by non-infected pepper plants. FintCSP1 is highly abundant in the antenna of F. intonsa. Silencing of FintCSP1 significantly decreased electroantennogram responses of F. intonsa antennae to cis-3-hexenal and impaired thrips' responses to TZSV-infected pepper plants and cis-3-hexenal, as assessed using a Y-tube olfactometer. Three-dimensional model predictions indicated that FintCSP1 consists of seven α-helixes and two disulfide bridges. Molecular docking analysis suggested that cis-3-hexenal is positioned deep inside the binding pocket of FintCSP1 and binds to residues of the protein. We combined site-directed mutagenesis and fluorescence binding assays and identified three hydrophilic residues, Lys26, Thr28, and Glu67, of FintCSP1 as being critical for cis-3-hexenal binding. Furthermore, CSP of F. occidentalis (FoccCSP) is also a key olfactory protein involved in modulating the behaviour of F. occidentalis to TZSV-infected pepper. This study revealed the specific binding characteristics of CSPs to cis-3-hexenal and confirmed the general hypothesis that virus infections induce changes in host volatiles, which can be recognized by the olfactory proteins of the insect vector to enhance vector attraction and this may facilitate viral spread and transmission.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1011380</identifier><identifier>PMID: 37155712</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Allelochemicals ; Analysis ; Animals ; Antennae ; Binding ; Biology and Life Sciences ; Capsicum ; Capsicum annuum ; Chemoreception ; Diseases ; Flowers & plants ; Fluorescence ; Frankliniella intonsa ; Genes ; Health aspects ; Hex-3-enal ; Host plants ; Infection ; Infections ; Influence ; Insects ; Ligands ; Medicine and Health Sciences ; Molecular docking ; Molecular Docking Simulation ; Odors ; Peppers ; Physical Sciences ; Plant Viruses ; Plant-pathogen relationships ; Protein binding ; Proteins ; Research and Analysis Methods ; Residues ; Signal transduction ; Site-directed mutagenesis ; Solanum lycopersicum ; Statistical significance ; Sweet peppers ; Three dimensional models ; Thrips ; Thysanoptera - physiology ; Tomatoes ; Vectors ; Vegetables ; Viral proteins ; Virus diseases ; Viruses ; VOCs ; Volatile organic compounds ; Volatiles ; Winter</subject><ispartof>PLoS pathogens, 2023-05, Vol.19 (5), p.e1011380-e1011380</ispartof><rights>Copyright: © 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Li et al 2023 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c662t-ac25f6dfb11a070f9353209598477df0f4cc79e33385c55ca6b82a6f5191bd5b3</citedby><cites>FETCH-LOGICAL-c662t-ac25f6dfb11a070f9353209598477df0f4cc79e33385c55ca6b82a6f5191bd5b3</cites><orcidid>0000-0002-3441-9155 ; 0000-0003-4110-2698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194981/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194981/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37155712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Carr, John P.</contributor><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Chen, Yixin</creatorcontrib><creatorcontrib>Lu, Chengcong</creatorcontrib><creatorcontrib>Tian, Houjun</creatorcontrib><creatorcontrib>Lin, Shuo</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Linghu, Tingting</creatorcontrib><creatorcontrib>Zheng, Xue</creatorcontrib><creatorcontrib>Wei, Hui</creatorcontrib><creatorcontrib>Fan, Xiaojing</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><title>Chemosensory protein regulates the behavioural response of Frankliniella intonsa and Frankliniella occidentalis to tomato zonate spot virus-Infected pepper (Capsicum annuum)</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Many herbivorous insects rely on plant volatiles to locate their host plants. Vector-borne viral infections induce changes in plant volatiles, which render infected plants more attractive to insect vectors. However, the detailed mechanisms underlying the olfactory responses of insect vectors induced by the volatiles produced by virus-infected plants are poorly understood. Here, we show that volatiles emitted by pepper (Capsicum annuum) plants infected with tomato zonate spot virus (TZSV), particularly the volatile cis-3-hexenal, which is recognized by chemosensory protein 1 of the thrips Frankliniella intonsa (FintCSP1), are more attractive to F. intonsa than the volatiles emitted by non-infected pepper plants. FintCSP1 is highly abundant in the antenna of F. intonsa. Silencing of FintCSP1 significantly decreased electroantennogram responses of F. intonsa antennae to cis-3-hexenal and impaired thrips' responses to TZSV-infected pepper plants and cis-3-hexenal, as assessed using a Y-tube olfactometer. Three-dimensional model predictions indicated that FintCSP1 consists of seven α-helixes and two disulfide bridges. Molecular docking analysis suggested that cis-3-hexenal is positioned deep inside the binding pocket of FintCSP1 and binds to residues of the protein. We combined site-directed mutagenesis and fluorescence binding assays and identified three hydrophilic residues, Lys26, Thr28, and Glu67, of FintCSP1 as being critical for cis-3-hexenal binding. Furthermore, CSP of F. occidentalis (FoccCSP) is also a key olfactory protein involved in modulating the behaviour of F. occidentalis to TZSV-infected pepper. This study revealed the specific binding characteristics of CSPs to cis-3-hexenal and confirmed the general hypothesis that virus infections induce changes in host volatiles, which can be recognized by the olfactory proteins of the insect vector to enhance vector attraction and this may facilitate viral spread and transmission.</description><subject>Allelochemicals</subject><subject>Analysis</subject><subject>Animals</subject><subject>Antennae</subject><subject>Binding</subject><subject>Biology and Life Sciences</subject><subject>Capsicum</subject><subject>Capsicum annuum</subject><subject>Chemoreception</subject><subject>Diseases</subject><subject>Flowers & plants</subject><subject>Fluorescence</subject><subject>Frankliniella intonsa</subject><subject>Genes</subject><subject>Health aspects</subject><subject>Hex-3-enal</subject><subject>Host plants</subject><subject>Infection</subject><subject>Infections</subject><subject>Influence</subject><subject>Insects</subject><subject>Ligands</subject><subject>Medicine and Health Sciences</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Odors</subject><subject>Peppers</subject><subject>Physical Sciences</subject><subject>Plant Viruses</subject><subject>Plant-pathogen relationships</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Residues</subject><subject>Signal transduction</subject><subject>Site-directed mutagenesis</subject><subject>Solanum lycopersicum</subject><subject>Statistical significance</subject><subject>Sweet peppers</subject><subject>Three dimensional models</subject><subject>Thrips</subject><subject>Thysanoptera - physiology</subject><subject>Tomatoes</subject><subject>Vectors</subject><subject>Vegetables</subject><subject>Viral proteins</subject><subject>Virus diseases</subject><subject>Viruses</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Volatiles</subject><subject>Winter</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk89u1DAQxiMEoqXwBggicWkPu9hxbCcnVK0orFSBxJ-z5TiTXZfEDrazorwT78gsu626VS8olhx5fvNN5nMmy15SMqdM0rdXfgpO9_Nx1GlOCaWsIo-yY8o5m0kmy8d33o-yZzFeEVJSRsXT7AjzOZe0OM7-LNYw-Agu-nCdj8EnsC4PsJp6nSDmaQ15A2u9sVhO9xiJo3cRct_lF0G7H711Fvpe59YlDOhcu_ZexBtjW3BJ9xYFPa5B4_bbOyyRo17KNzZMcbZ0HZgEbT7COELITxd6jNZMA4q6aRrOnmdPOt1HeLHfT7LvF--_LT7OLj9_WC7OL2dGiCLNtCl4J9quoVQTSbqacVaQmtdVKWXbka40RtbAGKu44dxo0VSFFh2nNW1a3rCT7PVOd-x9VHunoyqqQlREECmRWO6I1usrNQY76HCtvLbq34EPK6VDsqYHZWopKWlEYaqmpIbXBZO803XDAKgoBWq921ebmgFag1ah1QeihxFn12rlNwpvvS7riqLC6V4h-J8TxKQGG83WfAd-2n44pVygASWib-6hD7e3p1YaO7Cu81jYbEXVueRUEI5_G1LzByh8Whis8Q46i-cHCWcHCcgk-JVWeopRLb9--Q_20yFb7lgTfIwBulvzKFHbablpUm2nRe2nBdNe3TX-NulmPNhfKZQT_g</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Li, Heng</creator><creator>Chen, Yixin</creator><creator>Lu, Chengcong</creator><creator>Tian, Houjun</creator><creator>Lin, Shuo</creator><creator>Wang, Liang</creator><creator>Linghu, Tingting</creator><creator>Zheng, Xue</creator><creator>Wei, Hui</creator><creator>Fan, Xiaojing</creator><creator>Chen, Yong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3441-9155</orcidid><orcidid>https://orcid.org/0000-0003-4110-2698</orcidid></search><sort><creationdate>20230501</creationdate><title>Chemosensory protein regulates the behavioural response of Frankliniella intonsa and Frankliniella occidentalis to tomato zonate spot virus-Infected pepper (Capsicum annuum)</title><author>Li, Heng ; Chen, Yixin ; Lu, Chengcong ; Tian, Houjun ; Lin, Shuo ; Wang, Liang ; Linghu, Tingting ; Zheng, Xue ; Wei, Hui ; Fan, Xiaojing ; Chen, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c662t-ac25f6dfb11a070f9353209598477df0f4cc79e33385c55ca6b82a6f5191bd5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Allelochemicals</topic><topic>Analysis</topic><topic>Animals</topic><topic>Antennae</topic><topic>Binding</topic><topic>Biology and Life Sciences</topic><topic>Capsicum</topic><topic>Capsicum annuum</topic><topic>Chemoreception</topic><topic>Diseases</topic><topic>Flowers & plants</topic><topic>Fluorescence</topic><topic>Frankliniella intonsa</topic><topic>Genes</topic><topic>Health aspects</topic><topic>Hex-3-enal</topic><topic>Host plants</topic><topic>Infection</topic><topic>Infections</topic><topic>Influence</topic><topic>Insects</topic><topic>Ligands</topic><topic>Medicine and Health Sciences</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Odors</topic><topic>Peppers</topic><topic>Physical Sciences</topic><topic>Plant Viruses</topic><topic>Plant-pathogen relationships</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Residues</topic><topic>Signal transduction</topic><topic>Site-directed mutagenesis</topic><topic>Solanum lycopersicum</topic><topic>Statistical significance</topic><topic>Sweet peppers</topic><topic>Three dimensional models</topic><topic>Thrips</topic><topic>Thysanoptera - physiology</topic><topic>Tomatoes</topic><topic>Vectors</topic><topic>Vegetables</topic><topic>Viral proteins</topic><topic>Virus diseases</topic><topic>Viruses</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Volatiles</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Chen, Yixin</creatorcontrib><creatorcontrib>Lu, Chengcong</creatorcontrib><creatorcontrib>Tian, Houjun</creatorcontrib><creatorcontrib>Lin, Shuo</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Linghu, Tingting</creatorcontrib><creatorcontrib>Zheng, Xue</creatorcontrib><creatorcontrib>Wei, Hui</creatorcontrib><creatorcontrib>Fan, Xiaojing</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Heng</au><au>Chen, Yixin</au><au>Lu, Chengcong</au><au>Tian, Houjun</au><au>Lin, Shuo</au><au>Wang, Liang</au><au>Linghu, Tingting</au><au>Zheng, Xue</au><au>Wei, Hui</au><au>Fan, Xiaojing</au><au>Chen, Yong</au><au>Carr, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemosensory protein regulates the behavioural response of Frankliniella intonsa and Frankliniella occidentalis to tomato zonate spot virus-Infected pepper (Capsicum annuum)</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>19</volume><issue>5</issue><spage>e1011380</spage><epage>e1011380</epage><pages>e1011380-e1011380</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Many herbivorous insects rely on plant volatiles to locate their host plants. Vector-borne viral infections induce changes in plant volatiles, which render infected plants more attractive to insect vectors. However, the detailed mechanisms underlying the olfactory responses of insect vectors induced by the volatiles produced by virus-infected plants are poorly understood. Here, we show that volatiles emitted by pepper (Capsicum annuum) plants infected with tomato zonate spot virus (TZSV), particularly the volatile cis-3-hexenal, which is recognized by chemosensory protein 1 of the thrips Frankliniella intonsa (FintCSP1), are more attractive to F. intonsa than the volatiles emitted by non-infected pepper plants. FintCSP1 is highly abundant in the antenna of F. intonsa. Silencing of FintCSP1 significantly decreased electroantennogram responses of F. intonsa antennae to cis-3-hexenal and impaired thrips' responses to TZSV-infected pepper plants and cis-3-hexenal, as assessed using a Y-tube olfactometer. Three-dimensional model predictions indicated that FintCSP1 consists of seven α-helixes and two disulfide bridges. Molecular docking analysis suggested that cis-3-hexenal is positioned deep inside the binding pocket of FintCSP1 and binds to residues of the protein. We combined site-directed mutagenesis and fluorescence binding assays and identified three hydrophilic residues, Lys26, Thr28, and Glu67, of FintCSP1 as being critical for cis-3-hexenal binding. Furthermore, CSP of F. occidentalis (FoccCSP) is also a key olfactory protein involved in modulating the behaviour of F. occidentalis to TZSV-infected pepper. This study revealed the specific binding characteristics of CSPs to cis-3-hexenal and confirmed the general hypothesis that virus infections induce changes in host volatiles, which can be recognized by the olfactory proteins of the insect vector to enhance vector attraction and this may facilitate viral spread and transmission.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37155712</pmid><doi>10.1371/journal.ppat.1011380</doi><tpages>e1011380</tpages><orcidid>https://orcid.org/0000-0002-3441-9155</orcidid><orcidid>https://orcid.org/0000-0003-4110-2698</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2023-05, Vol.19 (5), p.e1011380-e1011380 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2826806077 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Public Library of Science (PLoS); PubMed Central |
subjects | Allelochemicals Analysis Animals Antennae Binding Biology and Life Sciences Capsicum Capsicum annuum Chemoreception Diseases Flowers & plants Fluorescence Frankliniella intonsa Genes Health aspects Hex-3-enal Host plants Infection Infections Influence Insects Ligands Medicine and Health Sciences Molecular docking Molecular Docking Simulation Odors Peppers Physical Sciences Plant Viruses Plant-pathogen relationships Protein binding Proteins Research and Analysis Methods Residues Signal transduction Site-directed mutagenesis Solanum lycopersicum Statistical significance Sweet peppers Three dimensional models Thrips Thysanoptera - physiology Tomatoes Vectors Vegetables Viral proteins Virus diseases Viruses VOCs Volatile organic compounds Volatiles Winter |
title | Chemosensory protein regulates the behavioural response of Frankliniella intonsa and Frankliniella occidentalis to tomato zonate spot virus-Infected pepper (Capsicum annuum) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemosensory%20protein%20regulates%20the%20behavioural%20response%20of%20Frankliniella%20intonsa%20and%20Frankliniella%20occidentalis%20to%20tomato%20zonate%20spot%20virus-Infected%20pepper%20(Capsicum%20annuum)&rft.jtitle=PLoS%20pathogens&rft.au=Li,%20Heng&rft.date=2023-05-01&rft.volume=19&rft.issue=5&rft.spage=e1011380&rft.epage=e1011380&rft.pages=e1011380-e1011380&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1011380&rft_dat=%3Cgale_plos_%3EA751605380%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826806077&rft_id=info:pmid/37155712&rft_galeid=A751605380&rft_doaj_id=oai_doaj_org_article_c97710b62c8b41c592375fa9b3ee1646&rfr_iscdi=true |