The multifaceted interactions between pathogens and host ESCRT machinery

The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2023-05, Vol.19 (5), p.e1011344-e1011344
Hauptverfasser: Rivera-Cuevas, Yolanda, Carruthers, Vern B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1011344
container_issue 5
container_start_page e1011344
container_title PLoS pathogens
container_volume 19
creator Rivera-Cuevas, Yolanda
Carruthers, Vern B
description The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.
doi_str_mv 10.1371/journal.ppat.1011344
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2826806062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751608571</galeid><doaj_id>oai_doaj_org_article_04eab512fbbb44d89240639ad578a3de</doaj_id><sourcerecordid>A751608571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c662t-9d1f0412552048464eda4e3f0fa416962a14f3ef924c12f7b3d410fc22997d853</originalsourceid><addsrcrecordid>eNqVkl9v0zAUxSMEYmPwDRBE4gUeWvw_yROaqsEqTSBt5dly7OvWVRIX2wH27XFpNq1oLygPia5_5xzfm1sUrzGaY1rhj1s_hkF1891OpTlGGFPGnhSnmHM6q2jFnj74PilexLhFiGGKxfPiJOsZJhU_LS5XGyj7sUvOKg0JTOmGBEHp5PwQyxbSL4ChzBkbv4ZcUYMpNz6m8uJmcb0qe6U3boBw-7J4ZlUX4dX0Piu-f75YLS5nV9--LBfnVzMtBEmzxmCbr0E4J4jVTDAwigG1yCqGRSOIwsxSsA1hGhNbtdQwjKwmpGkqU3N6Vrw9-O46H-U0hChJTUSNBBIkE8sDYbzayl1wvQq30isn_xZ8WEsVktMdSMRAtTzntG3LmKlzKhK0UYZXtaIGstenKW1sezAahhRUd2R6fDK4jVz7nzL_EN5gQbPD-8kh-B8jxCR7FzV0nRrAj_uLo4YzUuEqo-_-QR9vb6LWKnfgButzsN6byvOKY4FqXuFMzR-h8mOgd9oPYF2uHwk-HAkyk-B3WqsxRrm8uf4P9usxyw6sDj7GAPZ-eBjJ_SLfNSn3iyynRc6yNw8Hfy-621z6B5P17KM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826806062</pqid></control><display><type>article</type><title>The multifaceted interactions between pathogens and host ESCRT machinery</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Rivera-Cuevas, Yolanda ; Carruthers, Vern B</creator><creatorcontrib>Rivera-Cuevas, Yolanda ; Carruthers, Vern B</creatorcontrib><description>The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1011344</identifier><identifier>PMID: 37141275</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abscission ; Amino acids ; Analysis ; Biology and Life Sciences ; Biosynthesis ; Budding ; Carrier proteins ; Cell Movement ; Cytokinesis ; Cytosol ; Endosomal Sorting Complexes Required for Transport - metabolism ; Exosomes ; Exosomes - metabolism ; Exploitation ; Growth ; HIV ; Host-parasite relationships ; Human immunodeficiency virus ; Humans ; Intracellular ; Kinases ; Medicine and Health Sciences ; Membranes ; Mimicry ; Parasites ; Pathogenesis ; Pathogenic microorganisms ; Pathogens ; Physiological aspects ; Protein Transport ; Proteins ; Recruitment ; Review ; Virus Replication ; Viruses</subject><ispartof>PLoS pathogens, 2023-05, Vol.19 (5), p.e1011344-e1011344</ispartof><rights>Copyright: © 2023 Rivera-Cuevas, Carruthers. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Rivera-Cuevas, Carruthers. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Rivera-Cuevas, Carruthers 2023 Rivera-Cuevas, Carruthers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c662t-9d1f0412552048464eda4e3f0fa416962a14f3ef924c12f7b3d410fc22997d853</citedby><cites>FETCH-LOGICAL-c662t-9d1f0412552048464eda4e3f0fa416962a14f3ef924c12f7b3d410fc22997d853</cites><orcidid>0000-0001-6859-8895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159163/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159163/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37141275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rivera-Cuevas, Yolanda</creatorcontrib><creatorcontrib>Carruthers, Vern B</creatorcontrib><title>The multifaceted interactions between pathogens and host ESCRT machinery</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.</description><subject>Abscission</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Budding</subject><subject>Carrier proteins</subject><subject>Cell Movement</subject><subject>Cytokinesis</subject><subject>Cytosol</subject><subject>Endosomal Sorting Complexes Required for Transport - metabolism</subject><subject>Exosomes</subject><subject>Exosomes - metabolism</subject><subject>Exploitation</subject><subject>Growth</subject><subject>HIV</subject><subject>Host-parasite relationships</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Intracellular</subject><subject>Kinases</subject><subject>Medicine and Health Sciences</subject><subject>Membranes</subject><subject>Mimicry</subject><subject>Parasites</subject><subject>Pathogenesis</subject><subject>Pathogenic microorganisms</subject><subject>Pathogens</subject><subject>Physiological aspects</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Recruitment</subject><subject>Review</subject><subject>Virus Replication</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl9v0zAUxSMEYmPwDRBE4gUeWvw_yROaqsEqTSBt5dly7OvWVRIX2wH27XFpNq1oLygPia5_5xzfm1sUrzGaY1rhj1s_hkF1891OpTlGGFPGnhSnmHM6q2jFnj74PilexLhFiGGKxfPiJOsZJhU_LS5XGyj7sUvOKg0JTOmGBEHp5PwQyxbSL4ChzBkbv4ZcUYMpNz6m8uJmcb0qe6U3boBw-7J4ZlUX4dX0Piu-f75YLS5nV9--LBfnVzMtBEmzxmCbr0E4J4jVTDAwigG1yCqGRSOIwsxSsA1hGhNbtdQwjKwmpGkqU3N6Vrw9-O46H-U0hChJTUSNBBIkE8sDYbzayl1wvQq30isn_xZ8WEsVktMdSMRAtTzntG3LmKlzKhK0UYZXtaIGstenKW1sezAahhRUd2R6fDK4jVz7nzL_EN5gQbPD-8kh-B8jxCR7FzV0nRrAj_uLo4YzUuEqo-_-QR9vb6LWKnfgButzsN6byvOKY4FqXuFMzR-h8mOgd9oPYF2uHwk-HAkyk-B3WqsxRrm8uf4P9usxyw6sDj7GAPZ-eBjJ_SLfNSn3iyynRc6yNw8Hfy-621z6B5P17KM</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Rivera-Cuevas, Yolanda</creator><creator>Carruthers, Vern B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6859-8895</orcidid></search><sort><creationdate>20230501</creationdate><title>The multifaceted interactions between pathogens and host ESCRT machinery</title><author>Rivera-Cuevas, Yolanda ; Carruthers, Vern B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c662t-9d1f0412552048464eda4e3f0fa416962a14f3ef924c12f7b3d410fc22997d853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abscission</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Budding</topic><topic>Carrier proteins</topic><topic>Cell Movement</topic><topic>Cytokinesis</topic><topic>Cytosol</topic><topic>Endosomal Sorting Complexes Required for Transport - metabolism</topic><topic>Exosomes</topic><topic>Exosomes - metabolism</topic><topic>Exploitation</topic><topic>Growth</topic><topic>HIV</topic><topic>Host-parasite relationships</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Intracellular</topic><topic>Kinases</topic><topic>Medicine and Health Sciences</topic><topic>Membranes</topic><topic>Mimicry</topic><topic>Parasites</topic><topic>Pathogenesis</topic><topic>Pathogenic microorganisms</topic><topic>Pathogens</topic><topic>Physiological aspects</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Recruitment</topic><topic>Review</topic><topic>Virus Replication</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera-Cuevas, Yolanda</creatorcontrib><creatorcontrib>Carruthers, Vern B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera-Cuevas, Yolanda</au><au>Carruthers, Vern B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The multifaceted interactions between pathogens and host ESCRT machinery</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>19</volume><issue>5</issue><spage>e1011344</spage><epage>e1011344</epage><pages>e1011344-e1011344</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37141275</pmid><doi>10.1371/journal.ppat.1011344</doi><tpages>e1011344</tpages><orcidid>https://orcid.org/0000-0001-6859-8895</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2023-05, Vol.19 (5), p.e1011344-e1011344
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2826806062
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Abscission
Amino acids
Analysis
Biology and Life Sciences
Biosynthesis
Budding
Carrier proteins
Cell Movement
Cytokinesis
Cytosol
Endosomal Sorting Complexes Required for Transport - metabolism
Exosomes
Exosomes - metabolism
Exploitation
Growth
HIV
Host-parasite relationships
Human immunodeficiency virus
Humans
Intracellular
Kinases
Medicine and Health Sciences
Membranes
Mimicry
Parasites
Pathogenesis
Pathogenic microorganisms
Pathogens
Physiological aspects
Protein Transport
Proteins
Recruitment
Review
Virus Replication
Viruses
title The multifaceted interactions between pathogens and host ESCRT machinery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20multifaceted%20interactions%20between%20pathogens%20and%20host%20ESCRT%20machinery&rft.jtitle=PLoS%20pathogens&rft.au=Rivera-Cuevas,%20Yolanda&rft.date=2023-05-01&rft.volume=19&rft.issue=5&rft.spage=e1011344&rft.epage=e1011344&rft.pages=e1011344-e1011344&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1011344&rft_dat=%3Cgale_plos_%3EA751608571%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826806062&rft_id=info:pmid/37141275&rft_galeid=A751608571&rft_doaj_id=oai_doaj_org_article_04eab512fbbb44d89240639ad578a3de&rfr_iscdi=true