Structure learning for gene regulatory networks
Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput "omics" data typically available. To overcome this challenge, often referred to as the "small n, large p problem," we exploit know...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2023-05, Vol.19 (5), p.e1011118-e1011118 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1011118 |
---|---|
container_issue | 5 |
container_start_page | e1011118 |
container_title | PLoS computational biology |
container_volume | 19 |
creator | Federico, Anthony Kern, Joseph Varelas, Xaralabos Monti, Stefano |
description | Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput "omics" data typically available. To overcome this challenge, often referred to as the "small n, large p problem," we exploit known organizing principles of biological networks that are sparse, modular, and likely share a large portion of their underlying architecture. We present SHINE-Structure Learning for Hierarchical Networks-a framework for defining data-driven structural constraints and incorporating a shared learning paradigm for efficiently learning multiple Markov networks from high-dimensional data at large p/n ratios not previously feasible. We evaluated SHINE on Pan-Cancer data comprising 23 tumor types, and found that learned tumor-specific networks exhibit expected graph properties of real biological networks, recapture previously validated interactions, and recapitulate findings in literature. Application of SHINE to the analysis of subtype-specific breast cancer networks identified key genes and biological processes for tumor maintenance and survival as well as potential therapeutic targets for modulating known breast cancer disease genes. |
doi_str_mv | 10.1371/journal.pcbi.1011118 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2826805148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751606730</galeid><doaj_id>oai_doaj_org_article_5bd5530733de4d4db85eec2ca937c608</doaj_id><sourcerecordid>A751606730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-24ffebe3a3f33d88e308c0e00ed7bafe218ca8be1a93474d1833f4c621e114e93</originalsourceid><addsrcrecordid>eNqVks9vFCEUxydGY2v1PzA6iZd62C0MMLAn0zRVN2k0sXomDPMYWVlYgVH738u406ZrvAgHHvB53_cjr6qeY7TEhOOzTRijV265051dYoTLEg-qY8wYWXDCxMN79lH1JKUNQsVctY-rI8Kbclmx4-rsOsdR5zFC7UBFb_1QmxDrATzUEYbRqRziTe0h_wzxW3paPTLKJXg2nyfVl7eXny_eL64-vltfnF8tNBMkLxpqDHRAFDGE9EIAQUIjQAh63ikDDRZaiQ6wWhHKaY8FIYbqtsGAMYUVOale7nV3LiQ515pkI5pWIIapKMR6T_RBbeQu2q2KNzIoK_88hDhIFbPVDiTr-tIJxEsqQHvad4IB6EaX4Fy3aNJ6M0cbuy30GnyOyh2IHv54-1UO4YfEqCFYUFQUTmeFGL6PkLLc2qTBOeUhjFPiuOUto-2EvvoL_Xd5yz01qFKB9SaUwLrsHrZWBw_GlvdzznCLWk4m2dcHDoXJ8CsPakxJrq8__Qf74ZCle1bHkFIEc9cWjOQ0ibfpy2kS5TyJxe3F_ZbeOd2OHvkNoWbZqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826805148</pqid></control><display><type>article</type><title>Structure learning for gene regulatory networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Federico, Anthony ; Kern, Joseph ; Varelas, Xaralabos ; Monti, Stefano</creator><contributor>Marz, Manja</contributor><creatorcontrib>Federico, Anthony ; Kern, Joseph ; Varelas, Xaralabos ; Monti, Stefano ; Marz, Manja</creatorcontrib><description>Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput "omics" data typically available. To overcome this challenge, often referred to as the "small n, large p problem," we exploit known organizing principles of biological networks that are sparse, modular, and likely share a large portion of their underlying architecture. We present SHINE-Structure Learning for Hierarchical Networks-a framework for defining data-driven structural constraints and incorporating a shared learning paradigm for efficiently learning multiple Markov networks from high-dimensional data at large p/n ratios not previously feasible. We evaluated SHINE on Pan-Cancer data comprising 23 tumor types, and found that learned tumor-specific networks exhibit expected graph properties of real biological networks, recapture previously validated interactions, and recapitulate findings in literature. Application of SHINE to the analysis of subtype-specific breast cancer networks identified key genes and biological processes for tumor maintenance and survival as well as potential therapeutic targets for modulating known breast cancer disease genes.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011118</identifier><identifier>PMID: 37200395</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biological activity ; Biological properties ; Biology and Life Sciences ; Breast cancer ; Breast Neoplasms - genetics ; Computer and Information Sciences ; Connectivity ; Female ; Gene expression ; Gene Regulatory Networks - genetics ; Genes ; Genomes ; Head & neck cancer ; Humans ; Learning ; Liver cancer ; Medicine and Health Sciences ; Metabolites ; Methods ; Multilevel analysis ; Networks ; Sample size ; Therapeutic targets ; Transcription factors ; Tumors</subject><ispartof>PLoS computational biology, 2023-05, Vol.19 (5), p.e1011118-e1011118</ispartof><rights>Copyright: © 2023 Federico et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Federico et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Federico et al 2023 Federico et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c583t-24ffebe3a3f33d88e308c0e00ed7bafe218ca8be1a93474d1833f4c621e114e93</cites><orcidid>0000-0002-2882-4541 ; 0000-0002-9376-0660 ; 0000-0003-2291-6020 ; 0000-0002-9200-1689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231840/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231840/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37200395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Marz, Manja</contributor><creatorcontrib>Federico, Anthony</creatorcontrib><creatorcontrib>Kern, Joseph</creatorcontrib><creatorcontrib>Varelas, Xaralabos</creatorcontrib><creatorcontrib>Monti, Stefano</creatorcontrib><title>Structure learning for gene regulatory networks</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput "omics" data typically available. To overcome this challenge, often referred to as the "small n, large p problem," we exploit known organizing principles of biological networks that are sparse, modular, and likely share a large portion of their underlying architecture. We present SHINE-Structure Learning for Hierarchical Networks-a framework for defining data-driven structural constraints and incorporating a shared learning paradigm for efficiently learning multiple Markov networks from high-dimensional data at large p/n ratios not previously feasible. We evaluated SHINE on Pan-Cancer data comprising 23 tumor types, and found that learned tumor-specific networks exhibit expected graph properties of real biological networks, recapture previously validated interactions, and recapitulate findings in literature. Application of SHINE to the analysis of subtype-specific breast cancer networks identified key genes and biological processes for tumor maintenance and survival as well as potential therapeutic targets for modulating known breast cancer disease genes.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biological activity</subject><subject>Biological properties</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Computer and Information Sciences</subject><subject>Connectivity</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genomes</subject><subject>Head & neck cancer</subject><subject>Humans</subject><subject>Learning</subject><subject>Liver cancer</subject><subject>Medicine and Health Sciences</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Multilevel analysis</subject><subject>Networks</subject><subject>Sample size</subject><subject>Therapeutic targets</subject><subject>Transcription factors</subject><subject>Tumors</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVks9vFCEUxydGY2v1PzA6iZd62C0MMLAn0zRVN2k0sXomDPMYWVlYgVH738u406ZrvAgHHvB53_cjr6qeY7TEhOOzTRijV265051dYoTLEg-qY8wYWXDCxMN79lH1JKUNQsVctY-rI8Kbclmx4-rsOsdR5zFC7UBFb_1QmxDrATzUEYbRqRziTe0h_wzxW3paPTLKJXg2nyfVl7eXny_eL64-vltfnF8tNBMkLxpqDHRAFDGE9EIAQUIjQAh63ikDDRZaiQ6wWhHKaY8FIYbqtsGAMYUVOale7nV3LiQ515pkI5pWIIapKMR6T_RBbeQu2q2KNzIoK_88hDhIFbPVDiTr-tIJxEsqQHvad4IB6EaX4Fy3aNJ6M0cbuy30GnyOyh2IHv54-1UO4YfEqCFYUFQUTmeFGL6PkLLc2qTBOeUhjFPiuOUto-2EvvoL_Xd5yz01qFKB9SaUwLrsHrZWBw_GlvdzznCLWk4m2dcHDoXJ8CsPakxJrq8__Qf74ZCle1bHkFIEc9cWjOQ0ibfpy2kS5TyJxe3F_ZbeOd2OHvkNoWbZqA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Federico, Anthony</creator><creator>Kern, Joseph</creator><creator>Varelas, Xaralabos</creator><creator>Monti, Stefano</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2882-4541</orcidid><orcidid>https://orcid.org/0000-0002-9376-0660</orcidid><orcidid>https://orcid.org/0000-0003-2291-6020</orcidid><orcidid>https://orcid.org/0000-0002-9200-1689</orcidid></search><sort><creationdate>20230501</creationdate><title>Structure learning for gene regulatory networks</title><author>Federico, Anthony ; Kern, Joseph ; Varelas, Xaralabos ; Monti, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-24ffebe3a3f33d88e308c0e00ed7bafe218ca8be1a93474d1833f4c621e114e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biological activity</topic><topic>Biological properties</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Computer and Information Sciences</topic><topic>Connectivity</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genomes</topic><topic>Head & neck cancer</topic><topic>Humans</topic><topic>Learning</topic><topic>Liver cancer</topic><topic>Medicine and Health Sciences</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Multilevel analysis</topic><topic>Networks</topic><topic>Sample size</topic><topic>Therapeutic targets</topic><topic>Transcription factors</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Federico, Anthony</creatorcontrib><creatorcontrib>Kern, Joseph</creatorcontrib><creatorcontrib>Varelas, Xaralabos</creatorcontrib><creatorcontrib>Monti, Stefano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Federico, Anthony</au><au>Kern, Joseph</au><au>Varelas, Xaralabos</au><au>Monti, Stefano</au><au>Marz, Manja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure learning for gene regulatory networks</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>19</volume><issue>5</issue><spage>e1011118</spage><epage>e1011118</epage><pages>e1011118-e1011118</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput "omics" data typically available. To overcome this challenge, often referred to as the "small n, large p problem," we exploit known organizing principles of biological networks that are sparse, modular, and likely share a large portion of their underlying architecture. We present SHINE-Structure Learning for Hierarchical Networks-a framework for defining data-driven structural constraints and incorporating a shared learning paradigm for efficiently learning multiple Markov networks from high-dimensional data at large p/n ratios not previously feasible. We evaluated SHINE on Pan-Cancer data comprising 23 tumor types, and found that learned tumor-specific networks exhibit expected graph properties of real biological networks, recapture previously validated interactions, and recapitulate findings in literature. Application of SHINE to the analysis of subtype-specific breast cancer networks identified key genes and biological processes for tumor maintenance and survival as well as potential therapeutic targets for modulating known breast cancer disease genes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37200395</pmid><doi>10.1371/journal.pcbi.1011118</doi><tpages>e1011118</tpages><orcidid>https://orcid.org/0000-0002-2882-4541</orcidid><orcidid>https://orcid.org/0000-0002-9376-0660</orcidid><orcidid>https://orcid.org/0000-0003-2291-6020</orcidid><orcidid>https://orcid.org/0000-0002-9200-1689</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2023-05, Vol.19 (5), p.e1011118-e1011118 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2826805148 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Algorithms Analysis Biological activity Biological properties Biology and Life Sciences Breast cancer Breast Neoplasms - genetics Computer and Information Sciences Connectivity Female Gene expression Gene Regulatory Networks - genetics Genes Genomes Head & neck cancer Humans Learning Liver cancer Medicine and Health Sciences Metabolites Methods Multilevel analysis Networks Sample size Therapeutic targets Transcription factors Tumors |
title | Structure learning for gene regulatory networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20learning%20for%20gene%20regulatory%20networks&rft.jtitle=PLoS%20computational%20biology&rft.au=Federico,%20Anthony&rft.date=2023-05-01&rft.volume=19&rft.issue=5&rft.spage=e1011118&rft.epage=e1011118&rft.pages=e1011118-e1011118&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011118&rft_dat=%3Cgale_plos_%3EA751606730%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826805148&rft_id=info:pmid/37200395&rft_galeid=A751606730&rft_doaj_id=oai_doaj_org_article_5bd5530733de4d4db85eec2ca937c608&rfr_iscdi=true |