Structure learning for gene regulatory networks

Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput "omics" data typically available. To overcome this challenge, often referred to as the "small n, large p problem," we exploit know...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2023-05, Vol.19 (5), p.e1011118-e1011118
Hauptverfasser: Federico, Anthony, Kern, Joseph, Varelas, Xaralabos, Monti, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1011118
container_issue 5
container_start_page e1011118
container_title PLoS computational biology
container_volume 19
creator Federico, Anthony
Kern, Joseph
Varelas, Xaralabos
Monti, Stefano
description Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput "omics" data typically available. To overcome this challenge, often referred to as the "small n, large p problem," we exploit known organizing principles of biological networks that are sparse, modular, and likely share a large portion of their underlying architecture. We present SHINE-Structure Learning for Hierarchical Networks-a framework for defining data-driven structural constraints and incorporating a shared learning paradigm for efficiently learning multiple Markov networks from high-dimensional data at large p/n ratios not previously feasible. We evaluated SHINE on Pan-Cancer data comprising 23 tumor types, and found that learned tumor-specific networks exhibit expected graph properties of real biological networks, recapture previously validated interactions, and recapitulate findings in literature. Application of SHINE to the analysis of subtype-specific breast cancer networks identified key genes and biological processes for tumor maintenance and survival as well as potential therapeutic targets for modulating known breast cancer disease genes.
doi_str_mv 10.1371/journal.pcbi.1011118
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2826805148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751606730</galeid><doaj_id>oai_doaj_org_article_5bd5530733de4d4db85eec2ca937c608</doaj_id><sourcerecordid>A751606730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-24ffebe3a3f33d88e308c0e00ed7bafe218ca8be1a93474d1833f4c621e114e93</originalsourceid><addsrcrecordid>eNqVks9vFCEUxydGY2v1PzA6iZd62C0MMLAn0zRVN2k0sXomDPMYWVlYgVH738u406ZrvAgHHvB53_cjr6qeY7TEhOOzTRijV265051dYoTLEg-qY8wYWXDCxMN79lH1JKUNQsVctY-rI8Kbclmx4-rsOsdR5zFC7UBFb_1QmxDrATzUEYbRqRziTe0h_wzxW3paPTLKJXg2nyfVl7eXny_eL64-vltfnF8tNBMkLxpqDHRAFDGE9EIAQUIjQAh63ikDDRZaiQ6wWhHKaY8FIYbqtsGAMYUVOale7nV3LiQ515pkI5pWIIapKMR6T_RBbeQu2q2KNzIoK_88hDhIFbPVDiTr-tIJxEsqQHvad4IB6EaX4Fy3aNJ6M0cbuy30GnyOyh2IHv54-1UO4YfEqCFYUFQUTmeFGL6PkLLc2qTBOeUhjFPiuOUto-2EvvoL_Xd5yz01qFKB9SaUwLrsHrZWBw_GlvdzznCLWk4m2dcHDoXJ8CsPakxJrq8__Qf74ZCle1bHkFIEc9cWjOQ0ibfpy2kS5TyJxe3F_ZbeOd2OHvkNoWbZqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826805148</pqid></control><display><type>article</type><title>Structure learning for gene regulatory networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Federico, Anthony ; Kern, Joseph ; Varelas, Xaralabos ; Monti, Stefano</creator><contributor>Marz, Manja</contributor><creatorcontrib>Federico, Anthony ; Kern, Joseph ; Varelas, Xaralabos ; Monti, Stefano ; Marz, Manja</creatorcontrib><description>Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput "omics" data typically available. To overcome this challenge, often referred to as the "small n, large p problem," we exploit known organizing principles of biological networks that are sparse, modular, and likely share a large portion of their underlying architecture. We present SHINE-Structure Learning for Hierarchical Networks-a framework for defining data-driven structural constraints and incorporating a shared learning paradigm for efficiently learning multiple Markov networks from high-dimensional data at large p/n ratios not previously feasible. We evaluated SHINE on Pan-Cancer data comprising 23 tumor types, and found that learned tumor-specific networks exhibit expected graph properties of real biological networks, recapture previously validated interactions, and recapitulate findings in literature. Application of SHINE to the analysis of subtype-specific breast cancer networks identified key genes and biological processes for tumor maintenance and survival as well as potential therapeutic targets for modulating known breast cancer disease genes.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011118</identifier><identifier>PMID: 37200395</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biological activity ; Biological properties ; Biology and Life Sciences ; Breast cancer ; Breast Neoplasms - genetics ; Computer and Information Sciences ; Connectivity ; Female ; Gene expression ; Gene Regulatory Networks - genetics ; Genes ; Genomes ; Head &amp; neck cancer ; Humans ; Learning ; Liver cancer ; Medicine and Health Sciences ; Metabolites ; Methods ; Multilevel analysis ; Networks ; Sample size ; Therapeutic targets ; Transcription factors ; Tumors</subject><ispartof>PLoS computational biology, 2023-05, Vol.19 (5), p.e1011118-e1011118</ispartof><rights>Copyright: © 2023 Federico et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Federico et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Federico et al 2023 Federico et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c583t-24ffebe3a3f33d88e308c0e00ed7bafe218ca8be1a93474d1833f4c621e114e93</cites><orcidid>0000-0002-2882-4541 ; 0000-0002-9376-0660 ; 0000-0003-2291-6020 ; 0000-0002-9200-1689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231840/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231840/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37200395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Marz, Manja</contributor><creatorcontrib>Federico, Anthony</creatorcontrib><creatorcontrib>Kern, Joseph</creatorcontrib><creatorcontrib>Varelas, Xaralabos</creatorcontrib><creatorcontrib>Monti, Stefano</creatorcontrib><title>Structure learning for gene regulatory networks</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput "omics" data typically available. To overcome this challenge, often referred to as the "small n, large p problem," we exploit known organizing principles of biological networks that are sparse, modular, and likely share a large portion of their underlying architecture. We present SHINE-Structure Learning for Hierarchical Networks-a framework for defining data-driven structural constraints and incorporating a shared learning paradigm for efficiently learning multiple Markov networks from high-dimensional data at large p/n ratios not previously feasible. We evaluated SHINE on Pan-Cancer data comprising 23 tumor types, and found that learned tumor-specific networks exhibit expected graph properties of real biological networks, recapture previously validated interactions, and recapitulate findings in literature. Application of SHINE to the analysis of subtype-specific breast cancer networks identified key genes and biological processes for tumor maintenance and survival as well as potential therapeutic targets for modulating known breast cancer disease genes.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biological activity</subject><subject>Biological properties</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Computer and Information Sciences</subject><subject>Connectivity</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genomes</subject><subject>Head &amp; neck cancer</subject><subject>Humans</subject><subject>Learning</subject><subject>Liver cancer</subject><subject>Medicine and Health Sciences</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Multilevel analysis</subject><subject>Networks</subject><subject>Sample size</subject><subject>Therapeutic targets</subject><subject>Transcription factors</subject><subject>Tumors</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVks9vFCEUxydGY2v1PzA6iZd62C0MMLAn0zRVN2k0sXomDPMYWVlYgVH738u406ZrvAgHHvB53_cjr6qeY7TEhOOzTRijV265051dYoTLEg-qY8wYWXDCxMN79lH1JKUNQsVctY-rI8Kbclmx4-rsOsdR5zFC7UBFb_1QmxDrATzUEYbRqRziTe0h_wzxW3paPTLKJXg2nyfVl7eXny_eL64-vltfnF8tNBMkLxpqDHRAFDGE9EIAQUIjQAh63ikDDRZaiQ6wWhHKaY8FIYbqtsGAMYUVOale7nV3LiQ515pkI5pWIIapKMR6T_RBbeQu2q2KNzIoK_88hDhIFbPVDiTr-tIJxEsqQHvad4IB6EaX4Fy3aNJ6M0cbuy30GnyOyh2IHv54-1UO4YfEqCFYUFQUTmeFGL6PkLLc2qTBOeUhjFPiuOUto-2EvvoL_Xd5yz01qFKB9SaUwLrsHrZWBw_GlvdzznCLWk4m2dcHDoXJ8CsPakxJrq8__Qf74ZCle1bHkFIEc9cWjOQ0ibfpy2kS5TyJxe3F_ZbeOd2OHvkNoWbZqA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Federico, Anthony</creator><creator>Kern, Joseph</creator><creator>Varelas, Xaralabos</creator><creator>Monti, Stefano</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2882-4541</orcidid><orcidid>https://orcid.org/0000-0002-9376-0660</orcidid><orcidid>https://orcid.org/0000-0003-2291-6020</orcidid><orcidid>https://orcid.org/0000-0002-9200-1689</orcidid></search><sort><creationdate>20230501</creationdate><title>Structure learning for gene regulatory networks</title><author>Federico, Anthony ; Kern, Joseph ; Varelas, Xaralabos ; Monti, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-24ffebe3a3f33d88e308c0e00ed7bafe218ca8be1a93474d1833f4c621e114e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biological activity</topic><topic>Biological properties</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Computer and Information Sciences</topic><topic>Connectivity</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genomes</topic><topic>Head &amp; neck cancer</topic><topic>Humans</topic><topic>Learning</topic><topic>Liver cancer</topic><topic>Medicine and Health Sciences</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Multilevel analysis</topic><topic>Networks</topic><topic>Sample size</topic><topic>Therapeutic targets</topic><topic>Transcription factors</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Federico, Anthony</creatorcontrib><creatorcontrib>Kern, Joseph</creatorcontrib><creatorcontrib>Varelas, Xaralabos</creatorcontrib><creatorcontrib>Monti, Stefano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Federico, Anthony</au><au>Kern, Joseph</au><au>Varelas, Xaralabos</au><au>Monti, Stefano</au><au>Marz, Manja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure learning for gene regulatory networks</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>19</volume><issue>5</issue><spage>e1011118</spage><epage>e1011118</epage><pages>e1011118-e1011118</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput "omics" data typically available. To overcome this challenge, often referred to as the "small n, large p problem," we exploit known organizing principles of biological networks that are sparse, modular, and likely share a large portion of their underlying architecture. We present SHINE-Structure Learning for Hierarchical Networks-a framework for defining data-driven structural constraints and incorporating a shared learning paradigm for efficiently learning multiple Markov networks from high-dimensional data at large p/n ratios not previously feasible. We evaluated SHINE on Pan-Cancer data comprising 23 tumor types, and found that learned tumor-specific networks exhibit expected graph properties of real biological networks, recapture previously validated interactions, and recapitulate findings in literature. Application of SHINE to the analysis of subtype-specific breast cancer networks identified key genes and biological processes for tumor maintenance and survival as well as potential therapeutic targets for modulating known breast cancer disease genes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37200395</pmid><doi>10.1371/journal.pcbi.1011118</doi><tpages>e1011118</tpages><orcidid>https://orcid.org/0000-0002-2882-4541</orcidid><orcidid>https://orcid.org/0000-0002-9376-0660</orcidid><orcidid>https://orcid.org/0000-0003-2291-6020</orcidid><orcidid>https://orcid.org/0000-0002-9200-1689</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2023-05, Vol.19 (5), p.e1011118-e1011118
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2826805148
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Algorithms
Analysis
Biological activity
Biological properties
Biology and Life Sciences
Breast cancer
Breast Neoplasms - genetics
Computer and Information Sciences
Connectivity
Female
Gene expression
Gene Regulatory Networks - genetics
Genes
Genomes
Head & neck cancer
Humans
Learning
Liver cancer
Medicine and Health Sciences
Metabolites
Methods
Multilevel analysis
Networks
Sample size
Therapeutic targets
Transcription factors
Tumors
title Structure learning for gene regulatory networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20learning%20for%20gene%20regulatory%20networks&rft.jtitle=PLoS%20computational%20biology&rft.au=Federico,%20Anthony&rft.date=2023-05-01&rft.volume=19&rft.issue=5&rft.spage=e1011118&rft.epage=e1011118&rft.pages=e1011118-e1011118&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011118&rft_dat=%3Cgale_plos_%3EA751606730%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826805148&rft_id=info:pmid/37200395&rft_galeid=A751606730&rft_doaj_id=oai_doaj_org_article_5bd5530733de4d4db85eec2ca937c608&rfr_iscdi=true