Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies

Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2023-04, Vol.19 (4), p.e1010423-e1010423
Hauptverfasser: Zitzmann, Carolin, Dächert, Christopher, Schmid, Bianca, van der Schaar, Hilde, van Hemert, Martijn, Perelson, Alan S, van Kuppeveld, Frank J M, Bartenschlager, Ralf, Binder, Marco, Kaderali, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010423
container_issue 4
container_start_page e1010423
container_title PLoS computational biology
container_volume 19
creator Zitzmann, Carolin
Dächert, Christopher
Schmid, Bianca
van der Schaar, Hilde
van Hemert, Martijn
Perelson, Alan S
van Kuppeveld, Frank J M
Bartenschlager, Ralf
Binder, Marco
Kaderali, Lars
description Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and showed that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency, which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, such as polyprotein cleavage and viral RNA synthesis, may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the in vitro viral replication early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth.
doi_str_mv 10.1371/JOURNAL.PCBI.1010423
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2814443798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748728336</galeid><doaj_id>oai_doaj_org_article_e39053271cc943da86c1d0cfb984c664</doaj_id><sourcerecordid>A748728336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-60c85e61c9a38b97e313bab7ce75a2fff0dbb3a53e2f06b4aac9d157546cee6f3</originalsourceid><addsrcrecordid>eNqVk99v0zAQxyMEYmPwHyCI4AUeWuzYsZOnqVT8KCobGuzZcpxL6iqJi-1M7L_nunbTivaC_GDr_Lnv13fWJclLSqaUSfrh2_nlxdlsOf0x_7iYUkIJz9ij5JjmOZtIlheP752PkmchrAnBYymeJkdMEspLwo-T-F3HFfQ6WqO7tHc1dHZoU9ekm24MkxC9HuoUjdIr68eQeth0iEbrhjS61NYwRNtcp5V3up6EDZjoxz7VGMUElIwedOyRSrdaEVoL4XnypNFdgBf7_SS5_Pzp1_zrZHn-ZTGfLSdGsCJOBDFFDoKaUrOiKiUwyipdSQMy11nTNKSuKqZzBllDRMW1NmVNc5lzYQBEw06S1zvdTeeCWrvRD2insoJyzpksCyQWO6J2eq023vbaXyunrboJON8q7bE3HShgJclZJqkxJWe1LoShNTFNVRbcCMFR63TvNlY91AZrxgYciB7eDHalWnelbj6PSYkKb3YKLkSrgrERzMq4YcCuKlqKgrESoXd7G-9-jxCi6m0w0HV6ADdidbLMWS65YIi-_Qd9uAd7qtVYph0ah68zW1E1k7yQGdoKpKYPULhq6C2-ERqL8YOE9wcJyET4E1s9hqAWPy_-gz07ZPmONd6F4KG56zAlajsZt0Wqjams2k8Gpr26_zt3SbejwP4CPhkKJw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814443798</pqid></control><display><type>article</type><title>Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zitzmann, Carolin ; Dächert, Christopher ; Schmid, Bianca ; van der Schaar, Hilde ; van Hemert, Martijn ; Perelson, Alan S ; van Kuppeveld, Frank J M ; Bartenschlager, Ralf ; Binder, Marco ; Kaderali, Lars</creator><contributor>Kasson, Peter M.</contributor><creatorcontrib>Zitzmann, Carolin ; Dächert, Christopher ; Schmid, Bianca ; van der Schaar, Hilde ; van Hemert, Martijn ; Perelson, Alan S ; van Kuppeveld, Frank J M ; Bartenschlager, Ralf ; Binder, Marco ; Kaderali, Lars ; Kasson, Peter M.</creatorcontrib><description>Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and showed that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency, which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, such as polyprotein cleavage and viral RNA synthesis, may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the in vitro viral replication early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/JOURNAL.PCBI.1010423</identifier><identifier>PMID: 37014904</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antiviral agents ; Antiviral Agents - pharmacology ; Biology and life sciences ; Chronic infection ; Genomes ; Health aspects ; Hepatitis C ; Humans ; Immune response ; Immune system ; Infectious diseases ; Intracellular ; Kinetics ; Life cycles ; Mathematical analysis ; Mathematical models ; Medicine and Health Sciences ; Models, Theoretical ; mRNA ; Organelles ; Pandemics ; Particle production ; Perturbation ; Product development ; Proteins ; Replicase ; Replication ; Research and analysis methods ; RNA Viruses ; RNA, Viral - genetics ; Similarity ; Synthesis ; Therapeutic targets ; Transcription ; Translation ; Vector-borne diseases ; Virus Replication - physiology ; Viruses ; Zika virus</subject><ispartof>PLoS computational biology, 2023-04, Vol.19 (4), p.e1010423-e1010423</ispartof><rights>Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c638t-60c85e61c9a38b97e313bab7ce75a2fff0dbb3a53e2f06b4aac9d157546cee6f3</cites><orcidid>0000-0002-2359-2294 ; 0000-0001-6441-3099 ; 0000-0002-2455-0002 ; 0000000164413099 ; 0000000224550002 ; 0000000223592294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104377/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104377/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37014904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1968339$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Kasson, Peter M.</contributor><creatorcontrib>Zitzmann, Carolin</creatorcontrib><creatorcontrib>Dächert, Christopher</creatorcontrib><creatorcontrib>Schmid, Bianca</creatorcontrib><creatorcontrib>van der Schaar, Hilde</creatorcontrib><creatorcontrib>van Hemert, Martijn</creatorcontrib><creatorcontrib>Perelson, Alan S</creatorcontrib><creatorcontrib>van Kuppeveld, Frank J M</creatorcontrib><creatorcontrib>Bartenschlager, Ralf</creatorcontrib><creatorcontrib>Binder, Marco</creatorcontrib><creatorcontrib>Kaderali, Lars</creatorcontrib><title>Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and showed that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency, which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, such as polyprotein cleavage and viral RNA synthesis, may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the in vitro viral replication early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth.</description><subject>Antiviral agents</subject><subject>Antiviral Agents - pharmacology</subject><subject>Biology and life sciences</subject><subject>Chronic infection</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Hepatitis C</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Infectious diseases</subject><subject>Intracellular</subject><subject>Kinetics</subject><subject>Life cycles</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Models, Theoretical</subject><subject>mRNA</subject><subject>Organelles</subject><subject>Pandemics</subject><subject>Particle production</subject><subject>Perturbation</subject><subject>Product development</subject><subject>Proteins</subject><subject>Replicase</subject><subject>Replication</subject><subject>Research and analysis methods</subject><subject>RNA Viruses</subject><subject>RNA, Viral - genetics</subject><subject>Similarity</subject><subject>Synthesis</subject><subject>Therapeutic targets</subject><subject>Transcription</subject><subject>Translation</subject><subject>Vector-borne diseases</subject><subject>Virus Replication - physiology</subject><subject>Viruses</subject><subject>Zika virus</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk99v0zAQxyMEYmPwHyCI4AUeWuzYsZOnqVT8KCobGuzZcpxL6iqJi-1M7L_nunbTivaC_GDr_Lnv13fWJclLSqaUSfrh2_nlxdlsOf0x_7iYUkIJz9ij5JjmOZtIlheP752PkmchrAnBYymeJkdMEspLwo-T-F3HFfQ6WqO7tHc1dHZoU9ekm24MkxC9HuoUjdIr68eQeth0iEbrhjS61NYwRNtcp5V3up6EDZjoxz7VGMUElIwedOyRSrdaEVoL4XnypNFdgBf7_SS5_Pzp1_zrZHn-ZTGfLSdGsCJOBDFFDoKaUrOiKiUwyipdSQMy11nTNKSuKqZzBllDRMW1NmVNc5lzYQBEw06S1zvdTeeCWrvRD2insoJyzpksCyQWO6J2eq023vbaXyunrboJON8q7bE3HShgJclZJqkxJWe1LoShNTFNVRbcCMFR63TvNlY91AZrxgYciB7eDHalWnelbj6PSYkKb3YKLkSrgrERzMq4YcCuKlqKgrESoXd7G-9-jxCi6m0w0HV6ADdidbLMWS65YIi-_Qd9uAd7qtVYph0ah68zW1E1k7yQGdoKpKYPULhq6C2-ERqL8YOE9wcJyET4E1s9hqAWPy_-gz07ZPmONd6F4KG56zAlajsZt0Wqjams2k8Gpr26_zt3SbejwP4CPhkKJw</recordid><startdate>20230404</startdate><enddate>20230404</enddate><creator>Zitzmann, Carolin</creator><creator>Dächert, Christopher</creator><creator>Schmid, Bianca</creator><creator>van der Schaar, Hilde</creator><creator>van Hemert, Martijn</creator><creator>Perelson, Alan S</creator><creator>van Kuppeveld, Frank J M</creator><creator>Bartenschlager, Ralf</creator><creator>Binder, Marco</creator><creator>Kaderali, Lars</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2359-2294</orcidid><orcidid>https://orcid.org/0000-0001-6441-3099</orcidid><orcidid>https://orcid.org/0000-0002-2455-0002</orcidid><orcidid>https://orcid.org/0000000164413099</orcidid><orcidid>https://orcid.org/0000000224550002</orcidid><orcidid>https://orcid.org/0000000223592294</orcidid></search><sort><creationdate>20230404</creationdate><title>Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies</title><author>Zitzmann, Carolin ; Dächert, Christopher ; Schmid, Bianca ; van der Schaar, Hilde ; van Hemert, Martijn ; Perelson, Alan S ; van Kuppeveld, Frank J M ; Bartenschlager, Ralf ; Binder, Marco ; Kaderali, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-60c85e61c9a38b97e313bab7ce75a2fff0dbb3a53e2f06b4aac9d157546cee6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antiviral agents</topic><topic>Antiviral Agents - pharmacology</topic><topic>Biology and life sciences</topic><topic>Chronic infection</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Hepatitis C</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Infectious diseases</topic><topic>Intracellular</topic><topic>Kinetics</topic><topic>Life cycles</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Models, Theoretical</topic><topic>mRNA</topic><topic>Organelles</topic><topic>Pandemics</topic><topic>Particle production</topic><topic>Perturbation</topic><topic>Product development</topic><topic>Proteins</topic><topic>Replicase</topic><topic>Replication</topic><topic>Research and analysis methods</topic><topic>RNA Viruses</topic><topic>RNA, Viral - genetics</topic><topic>Similarity</topic><topic>Synthesis</topic><topic>Therapeutic targets</topic><topic>Transcription</topic><topic>Translation</topic><topic>Vector-borne diseases</topic><topic>Virus Replication - physiology</topic><topic>Viruses</topic><topic>Zika virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zitzmann, Carolin</creatorcontrib><creatorcontrib>Dächert, Christopher</creatorcontrib><creatorcontrib>Schmid, Bianca</creatorcontrib><creatorcontrib>van der Schaar, Hilde</creatorcontrib><creatorcontrib>van Hemert, Martijn</creatorcontrib><creatorcontrib>Perelson, Alan S</creatorcontrib><creatorcontrib>van Kuppeveld, Frank J M</creatorcontrib><creatorcontrib>Bartenschlager, Ralf</creatorcontrib><creatorcontrib>Binder, Marco</creatorcontrib><creatorcontrib>Kaderali, Lars</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zitzmann, Carolin</au><au>Dächert, Christopher</au><au>Schmid, Bianca</au><au>van der Schaar, Hilde</au><au>van Hemert, Martijn</au><au>Perelson, Alan S</au><au>van Kuppeveld, Frank J M</au><au>Bartenschlager, Ralf</au><au>Binder, Marco</au><au>Kaderali, Lars</au><au>Kasson, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-04-04</date><risdate>2023</risdate><volume>19</volume><issue>4</issue><spage>e1010423</spage><epage>e1010423</epage><pages>e1010423-e1010423</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and showed that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency, which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, such as polyprotein cleavage and viral RNA synthesis, may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the in vitro viral replication early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37014904</pmid><doi>10.1371/JOURNAL.PCBI.1010423</doi><tpages>e1010423</tpages><orcidid>https://orcid.org/0000-0002-2359-2294</orcidid><orcidid>https://orcid.org/0000-0001-6441-3099</orcidid><orcidid>https://orcid.org/0000-0002-2455-0002</orcidid><orcidid>https://orcid.org/0000000164413099</orcidid><orcidid>https://orcid.org/0000000224550002</orcidid><orcidid>https://orcid.org/0000000223592294</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2023-04, Vol.19 (4), p.e1010423-e1010423
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2814443798
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Antiviral agents
Antiviral Agents - pharmacology
Biology and life sciences
Chronic infection
Genomes
Health aspects
Hepatitis C
Humans
Immune response
Immune system
Infectious diseases
Intracellular
Kinetics
Life cycles
Mathematical analysis
Mathematical models
Medicine and Health Sciences
Models, Theoretical
mRNA
Organelles
Pandemics
Particle production
Perturbation
Product development
Proteins
Replicase
Replication
Research and analysis methods
RNA Viruses
RNA, Viral - genetics
Similarity
Synthesis
Therapeutic targets
Transcription
Translation
Vector-borne diseases
Virus Replication - physiology
Viruses
Zika virus
title Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20plus-strand%20RNA%20virus%20replication%20to%20identify%20broad-spectrum%20antiviral%20treatment%20strategies&rft.jtitle=PLoS%20computational%20biology&rft.au=Zitzmann,%20Carolin&rft.date=2023-04-04&rft.volume=19&rft.issue=4&rft.spage=e1010423&rft.epage=e1010423&rft.pages=e1010423-e1010423&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/JOURNAL.PCBI.1010423&rft_dat=%3Cgale_plos_%3EA748728336%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814443798&rft_id=info:pmid/37014904&rft_galeid=A748728336&rft_doaj_id=oai_doaj_org_article_e39053271cc943da86c1d0cfb984c664&rfr_iscdi=true