Minor variations in multicellular life cycles have major effects on adaptation
Multicellularity has evolved several independent times over the past hundreds of millions of years and given rise to a wide diversity of complex life. Recent studies have found that large differences in the fundamental structure of early multicellular life cycles can affect fitness and influence mul...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2023-04, Vol.19 (4), p.e1010698-e1010698 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010698 |
---|---|
container_issue | 4 |
container_start_page | e1010698 |
container_title | PLoS computational biology |
container_volume | 19 |
creator | Isaksson, Hanna Brännström, Åke Libby, Eric |
description | Multicellularity has evolved several independent times over the past hundreds of millions of years and given rise to a wide diversity of complex life. Recent studies have found that large differences in the fundamental structure of early multicellular life cycles can affect fitness and influence multicellular adaptation. Yet, there is an underlying assumption that at some scale or categorization multicellular life cycles are similar in terms of their adaptive potential. Here, we consider this possibility by exploring adaptation in a class of simple multicellular life cycles of filamentous organisms that only differ in one respect, how many daughter filaments are produced. We use mathematical models and evolutionary simulations to show that despite the similarities, qualitatively different mutations fix. In particular, we find that mutations with a tradeoff between cell growth and group survival, i.e. "selfish" or "altruistic" traits, spread differently. Specifically, altruistic mutations more readily spread in life cycles that produce few daughters while in life cycles producing many daughters either type of mutation can spread depending on the environment. Our results show that subtle changes in multicellular life cycles can fundamentally alter adaptation. |
doi_str_mv | 10.1371/journal.pcbi.1010698 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2814443796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748728906</galeid><doaj_id>oai_doaj_org_article_3efc14b0c6e44136bface5c5eea95dc1</doaj_id><sourcerecordid>A748728906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-915a97f5c16d048cc46c5e2c19e98e0d2b0777f5c6a2f124dad91a64cb0cc86a3</originalsourceid><addsrcrecordid>eNqVksuO0zAUhiMEYobCGyCIxAYWLXbiS7xCo-FWaRgkblvrxDnpuHLiYieFeXuctjOaIjbIC1v29_8-tyx7SsmClpK-Xvsx9OAWG1PbBSWUCFXdy04p5-Vclry6f-d8kj2KcU1IOirxMDspJalKIflpdvnJ9j7kWwgWBuv7mNs-70Y3WIPOjQ5C7myLubk2DmN-BVvMO1gnCbYtmiHmvs-hgc2wkz_OHrTgIj457LPs-_t3384_zi8-f1ien13MjSjoMFeUg5ItN1Q0hFXGMGE4FoYqVBWSpqiJlNO7gKKlBWugURQEMzUxphJQzrLne9-N81EfShF1UVHGWCmVSMRyTzQe1noTbAfhWnuwenfhw0pDSFk61CW2hrJkLZAxWoq6BYM8BYSgeGNo8prvveIv3Iz1kdtb--Ns5zZ2oy6IKiqW-DeH6Ma6w8ZgPwRwR7Ljl95e6ZXf6tRGLgiXyeHlwSH4nyPGQXc2Th2BHv04JUo4KSlPLZ1lL_5C_12OxZ5aQcrY9q1PH5u0Guys8T22Nt2fSVbJolJkErw6EiRmwN_DCsYY9fLrl_9gL49ZtmdN8DEGbG_LQomeBvsmfD0Ntj4MdpI9u1vSW9HNJJd_AOr-9fs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814443796</pqid></control><display><type>article</type><title>Minor variations in multicellular life cycles have major effects on adaptation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><creator>Isaksson, Hanna ; Brännström, Åke ; Libby, Eric</creator><creatorcontrib>Isaksson, Hanna ; Brännström, Åke ; Libby, Eric</creatorcontrib><description>Multicellularity has evolved several independent times over the past hundreds of millions of years and given rise to a wide diversity of complex life. Recent studies have found that large differences in the fundamental structure of early multicellular life cycles can affect fitness and influence multicellular adaptation. Yet, there is an underlying assumption that at some scale or categorization multicellular life cycles are similar in terms of their adaptive potential. Here, we consider this possibility by exploring adaptation in a class of simple multicellular life cycles of filamentous organisms that only differ in one respect, how many daughter filaments are produced. We use mathematical models and evolutionary simulations to show that despite the similarities, qualitatively different mutations fix. In particular, we find that mutations with a tradeoff between cell growth and group survival, i.e. "selfish" or "altruistic" traits, spread differently. Specifically, altruistic mutations more readily spread in life cycles that produce few daughters while in life cycles producing many daughters either type of mutation can spread depending on the environment. Our results show that subtle changes in multicellular life cycles can fundamentally alter adaptation.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010698</identifier><identifier>PMID: 37083675</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acclimatization ; Adaptation ; Adaptation (Biology) ; Altruism ; Analysis ; Animals ; Biological Evolution ; Biology and Life Sciences ; Cell survival ; Cooperation ; Daughters ; Evolution ; Filaments ; Life Cycle Stages ; Life cycles ; Life cycles (Biology) ; Mathematical models ; Models, Theoretical ; Mutation ; Mutation (Biology) ; Phenotype ; Physical Sciences ; Research and Analysis Methods</subject><ispartof>PLoS computational biology, 2023-04, Vol.19 (4), p.e1010698-e1010698</ispartof><rights>Copyright: © 2023 Isaksson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Isaksson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Isaksson et al 2023 Isaksson et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c621t-915a97f5c16d048cc46c5e2c19e98e0d2b0777f5c6a2f124dad91a64cb0cc86a3</cites><orcidid>0000-0002-6569-5793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156057/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156057/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37083675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-209284$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Isaksson, Hanna</creatorcontrib><creatorcontrib>Brännström, Åke</creatorcontrib><creatorcontrib>Libby, Eric</creatorcontrib><title>Minor variations in multicellular life cycles have major effects on adaptation</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Multicellularity has evolved several independent times over the past hundreds of millions of years and given rise to a wide diversity of complex life. Recent studies have found that large differences in the fundamental structure of early multicellular life cycles can affect fitness and influence multicellular adaptation. Yet, there is an underlying assumption that at some scale or categorization multicellular life cycles are similar in terms of their adaptive potential. Here, we consider this possibility by exploring adaptation in a class of simple multicellular life cycles of filamentous organisms that only differ in one respect, how many daughter filaments are produced. We use mathematical models and evolutionary simulations to show that despite the similarities, qualitatively different mutations fix. In particular, we find that mutations with a tradeoff between cell growth and group survival, i.e. "selfish" or "altruistic" traits, spread differently. Specifically, altruistic mutations more readily spread in life cycles that produce few daughters while in life cycles producing many daughters either type of mutation can spread depending on the environment. Our results show that subtle changes in multicellular life cycles can fundamentally alter adaptation.</description><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Adaptation (Biology)</subject><subject>Altruism</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Biology and Life Sciences</subject><subject>Cell survival</subject><subject>Cooperation</subject><subject>Daughters</subject><subject>Evolution</subject><subject>Filaments</subject><subject>Life Cycle Stages</subject><subject>Life cycles</subject><subject>Life cycles (Biology)</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Mutation</subject><subject>Mutation (Biology)</subject><subject>Phenotype</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqVksuO0zAUhiMEYobCGyCIxAYWLXbiS7xCo-FWaRgkblvrxDnpuHLiYieFeXuctjOaIjbIC1v29_8-tyx7SsmClpK-Xvsx9OAWG1PbBSWUCFXdy04p5-Vclry6f-d8kj2KcU1IOirxMDspJalKIflpdvnJ9j7kWwgWBuv7mNs-70Y3WIPOjQ5C7myLubk2DmN-BVvMO1gnCbYtmiHmvs-hgc2wkz_OHrTgIj457LPs-_t3384_zi8-f1ien13MjSjoMFeUg5ItN1Q0hFXGMGE4FoYqVBWSpqiJlNO7gKKlBWugURQEMzUxphJQzrLne9-N81EfShF1UVHGWCmVSMRyTzQe1noTbAfhWnuwenfhw0pDSFk61CW2hrJkLZAxWoq6BYM8BYSgeGNo8prvveIv3Iz1kdtb--Ns5zZ2oy6IKiqW-DeH6Ma6w8ZgPwRwR7Ljl95e6ZXf6tRGLgiXyeHlwSH4nyPGQXc2Th2BHv04JUo4KSlPLZ1lL_5C_12OxZ5aQcrY9q1PH5u0Guys8T22Nt2fSVbJolJkErw6EiRmwN_DCsYY9fLrl_9gL49ZtmdN8DEGbG_LQomeBvsmfD0Ntj4MdpI9u1vSW9HNJJd_AOr-9fs</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Isaksson, Hanna</creator><creator>Brännström, Åke</creator><creator>Libby, Eric</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6569-5793</orcidid></search><sort><creationdate>20230401</creationdate><title>Minor variations in multicellular life cycles have major effects on adaptation</title><author>Isaksson, Hanna ; Brännström, Åke ; Libby, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-915a97f5c16d048cc46c5e2c19e98e0d2b0777f5c6a2f124dad91a64cb0cc86a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Adaptation (Biology)</topic><topic>Altruism</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Biology and Life Sciences</topic><topic>Cell survival</topic><topic>Cooperation</topic><topic>Daughters</topic><topic>Evolution</topic><topic>Filaments</topic><topic>Life Cycle Stages</topic><topic>Life cycles</topic><topic>Life cycles (Biology)</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Mutation</topic><topic>Mutation (Biology)</topic><topic>Phenotype</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isaksson, Hanna</creatorcontrib><creatorcontrib>Brännström, Åke</creatorcontrib><creatorcontrib>Libby, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isaksson, Hanna</au><au>Brännström, Åke</au><au>Libby, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minor variations in multicellular life cycles have major effects on adaptation</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>19</volume><issue>4</issue><spage>e1010698</spage><epage>e1010698</epage><pages>e1010698-e1010698</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Multicellularity has evolved several independent times over the past hundreds of millions of years and given rise to a wide diversity of complex life. Recent studies have found that large differences in the fundamental structure of early multicellular life cycles can affect fitness and influence multicellular adaptation. Yet, there is an underlying assumption that at some scale or categorization multicellular life cycles are similar in terms of their adaptive potential. Here, we consider this possibility by exploring adaptation in a class of simple multicellular life cycles of filamentous organisms that only differ in one respect, how many daughter filaments are produced. We use mathematical models and evolutionary simulations to show that despite the similarities, qualitatively different mutations fix. In particular, we find that mutations with a tradeoff between cell growth and group survival, i.e. "selfish" or "altruistic" traits, spread differently. Specifically, altruistic mutations more readily spread in life cycles that produce few daughters while in life cycles producing many daughters either type of mutation can spread depending on the environment. Our results show that subtle changes in multicellular life cycles can fundamentally alter adaptation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37083675</pmid><doi>10.1371/journal.pcbi.1010698</doi><tpages>e1010698</tpages><orcidid>https://orcid.org/0000-0002-6569-5793</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2023-04, Vol.19 (4), p.e1010698-e1010698 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2814443796 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online; Public Library of Science (PLoS) |
subjects | Acclimatization Adaptation Adaptation (Biology) Altruism Analysis Animals Biological Evolution Biology and Life Sciences Cell survival Cooperation Daughters Evolution Filaments Life Cycle Stages Life cycles Life cycles (Biology) Mathematical models Models, Theoretical Mutation Mutation (Biology) Phenotype Physical Sciences Research and Analysis Methods |
title | Minor variations in multicellular life cycles have major effects on adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minor%20variations%20in%20multicellular%20life%20cycles%20have%20major%20effects%20on%20adaptation&rft.jtitle=PLoS%20computational%20biology&rft.au=Isaksson,%20Hanna&rft.date=2023-04-01&rft.volume=19&rft.issue=4&rft.spage=e1010698&rft.epage=e1010698&rft.pages=e1010698-e1010698&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010698&rft_dat=%3Cgale_plos_%3EA748728906%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814443796&rft_id=info:pmid/37083675&rft_galeid=A748728906&rft_doaj_id=oai_doaj_org_article_3efc14b0c6e44136bface5c5eea95dc1&rfr_iscdi=true |