iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria
The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host as...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2023-04, Vol.21 (4), p.e3002083-e3002083 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3002083 |
---|---|
container_issue | 4 |
container_start_page | e3002083 |
container_title | PLoS biology |
container_volume | 21 |
creator | Roux, Simon Camargo, Antonio Pedro Coutinho, Felipe H Dabdoub, Shareef M Dutilh, Bas E Nayfach, Stephen Tritt, Andrew |
description | The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host association. Different computational approaches are available to predict the host(s) of uncultivated viruses based on their genome sequences, but thus far individual approaches are limited either in precision or in recall, i.e., for a number of viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a two-step framework that integrates multiple methods to reliably predict host taxonomy at the genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low false discovery rate. Based on a large dataset of metagenome-derived virus genomes from the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and guide further characterization of uncultivated viruses. |
doi_str_mv | 10.1371/journal.pbio.3002083 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2814430395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749467327</galeid><doaj_id>oai_doaj_org_article_24ba197aa8c4423985995c843c6de95c</doaj_id><sourcerecordid>A749467327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c723t-c7e04d134d420e6a1ec07bf87532b6e5b674a451f81c18fb75d35e432eb2adb03</originalsourceid><addsrcrecordid>eNqVk0tv1DAQxyMEoqXwDRBYcIHDLn5ukl5QVQGtVNGK19WaOJOsS2IvtrcUjnxyvOy26qIeQJZsy_Ob_zysKYrHjE6ZKNmrc78MDobporF-KijltBJ3il2mpJqUVaXu3rjvFA9iPM8Mr3l1v9gRZYZLoXaLX_bsyJ_tkwNHrEvYB0jYkhHM3DokA0Jw1vWkCzDidx--kuSz9dKO9ieSuY-JLAK21iTrHel8ICMm6NH5ESctBnuR1S5sWEaMxHcEgpkDAgHXkgZMygQ8LO51MER8tDn3is9v33w6PJqcnL47Pjw4mZiSi5R3pLJlQraSU5wBQ0PLpqtKJXgzQ9XMSglSsa5ihlVdU6pWKJSCY8OhbajYK56udReDj3rTvqh5xaQUVNQqE8drovVwrhfBjhB-aA9W_3nwodcQkjUDai4bYHUJUBkpuagrVdfKVFKYWYv5lrVeb6ItmxFbgy4FGLZEty3OznXvLzSjTGWxOis8WyvkLlsdjU1o5sY7hybpHJuxapXyi02Y4L8tMSY92mhwGMChX66qo4oKJhjP6PO_0Nt7sKF6yGVa1_mcnVmJ6oNS1nJWCl5manoLlVeLo805Ymfz-5bDyy2HzCS8TD0sY9THHz_8B_v-39nTL9usXLMm-BgDdte_wahezdRVQ_RqpvRmprLbk5s_ee10NUTiN0LtHG8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814430395</pqid></control><display><type>article</type><title>iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><source>Open Access: PubMed Central</source><source>PLoS</source><source>MEDLINE</source><source>EZB Electronic Journals Library</source><creator>Roux, Simon ; Camargo, Antonio Pedro ; Coutinho, Felipe H ; Dabdoub, Shareef M ; Dutilh, Bas E ; Nayfach, Stephen ; Tritt, Andrew</creator><creatorcontrib>Roux, Simon ; Camargo, Antonio Pedro ; Coutinho, Felipe H ; Dabdoub, Shareef M ; Dutilh, Bas E ; Nayfach, Stephen ; Tritt, Andrew</creatorcontrib><description>The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host association. Different computational approaches are available to predict the host(s) of uncultivated viruses based on their genome sequences, but thus far individual approaches are limited either in precision or in recall, i.e., for a number of viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a two-step framework that integrates multiple methods to reliably predict host taxonomy at the genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low false discovery rate. Based on a large dataset of metagenome-derived virus genomes from the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and guide further characterization of uncultivated viruses.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3002083</identifier><identifier>PMID: 37083735</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Archaea ; Archaea - genetics ; Bacteria ; Bacteria - genetics ; Bacteriophages ; Benchmarks ; Biology and Life Sciences ; Computer and Information Sciences ; CRISPR ; Datasets ; Ecology and Environmental Sciences ; Engineering and Technology ; Gene sequencing ; Genome, Viral - genetics ; Genomes ; Identification and classification ; Machine Learning ; Metabolism ; Metagenome - genetics ; Metagenomics ; Metagenomics - methods ; Methods ; Methods and Resources ; Predictions ; Research and Analysis Methods ; Taxonomy ; Viral infections ; Virulence ; Viruses ; Viruses - genetics</subject><ispartof>PLoS biology, 2023-04, Vol.21 (4), p.e3002083-e3002083</ispartof><rights>Copyright: © 2023 Roux et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Roux et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Roux et al 2023 Roux et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c723t-c7e04d134d420e6a1ec07bf87532b6e5b674a451f81c18fb75d35e432eb2adb03</citedby><cites>FETCH-LOGICAL-c723t-c7e04d134d420e6a1ec07bf87532b6e5b674a451f81c18fb75d35e432eb2adb03</cites><orcidid>0000-0002-5831-5895 ; 0000000258315895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155999/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155999/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37083735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1971185$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Roux, Simon</creatorcontrib><creatorcontrib>Camargo, Antonio Pedro</creatorcontrib><creatorcontrib>Coutinho, Felipe H</creatorcontrib><creatorcontrib>Dabdoub, Shareef M</creatorcontrib><creatorcontrib>Dutilh, Bas E</creatorcontrib><creatorcontrib>Nayfach, Stephen</creatorcontrib><creatorcontrib>Tritt, Andrew</creatorcontrib><title>iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host association. Different computational approaches are available to predict the host(s) of uncultivated viruses based on their genome sequences, but thus far individual approaches are limited either in precision or in recall, i.e., for a number of viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a two-step framework that integrates multiple methods to reliably predict host taxonomy at the genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low false discovery rate. Based on a large dataset of metagenome-derived virus genomes from the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and guide further characterization of uncultivated viruses.</description><subject>Analysis</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteriophages</subject><subject>Benchmarks</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>CRISPR</subject><subject>Datasets</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Gene sequencing</subject><subject>Genome, Viral - genetics</subject><subject>Genomes</subject><subject>Identification and classification</subject><subject>Machine Learning</subject><subject>Metabolism</subject><subject>Metagenome - genetics</subject><subject>Metagenomics</subject><subject>Metagenomics - methods</subject><subject>Methods</subject><subject>Methods and Resources</subject><subject>Predictions</subject><subject>Research and Analysis Methods</subject><subject>Taxonomy</subject><subject>Viral infections</subject><subject>Virulence</subject><subject>Viruses</subject><subject>Viruses - genetics</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk0tv1DAQxyMEoqXwDRBYcIHDLn5ukl5QVQGtVNGK19WaOJOsS2IvtrcUjnxyvOy26qIeQJZsy_Ob_zysKYrHjE6ZKNmrc78MDobporF-KijltBJ3il2mpJqUVaXu3rjvFA9iPM8Mr3l1v9gRZYZLoXaLX_bsyJ_tkwNHrEvYB0jYkhHM3DokA0Jw1vWkCzDidx--kuSz9dKO9ieSuY-JLAK21iTrHel8ICMm6NH5ESctBnuR1S5sWEaMxHcEgpkDAgHXkgZMygQ8LO51MER8tDn3is9v33w6PJqcnL47Pjw4mZiSi5R3pLJlQraSU5wBQ0PLpqtKJXgzQ9XMSglSsa5ihlVdU6pWKJSCY8OhbajYK56udReDj3rTvqh5xaQUVNQqE8drovVwrhfBjhB-aA9W_3nwodcQkjUDai4bYHUJUBkpuagrVdfKVFKYWYv5lrVeb6ItmxFbgy4FGLZEty3OznXvLzSjTGWxOis8WyvkLlsdjU1o5sY7hybpHJuxapXyi02Y4L8tMSY92mhwGMChX66qo4oKJhjP6PO_0Nt7sKF6yGVa1_mcnVmJ6oNS1nJWCl5manoLlVeLo805Ymfz-5bDyy2HzCS8TD0sY9THHz_8B_v-39nTL9usXLMm-BgDdte_wahezdRVQ_RqpvRmprLbk5s_ee10NUTiN0LtHG8</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Roux, Simon</creator><creator>Camargo, Antonio Pedro</creator><creator>Coutinho, Felipe H</creator><creator>Dabdoub, Shareef M</creator><creator>Dutilh, Bas E</creator><creator>Nayfach, Stephen</creator><creator>Tritt, Andrew</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-5831-5895</orcidid><orcidid>https://orcid.org/0000000258315895</orcidid></search><sort><creationdate>20230421</creationdate><title>iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria</title><author>Roux, Simon ; Camargo, Antonio Pedro ; Coutinho, Felipe H ; Dabdoub, Shareef M ; Dutilh, Bas E ; Nayfach, Stephen ; Tritt, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c723t-c7e04d134d420e6a1ec07bf87532b6e5b674a451f81c18fb75d35e432eb2adb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteriophages</topic><topic>Benchmarks</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>CRISPR</topic><topic>Datasets</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Gene sequencing</topic><topic>Genome, Viral - genetics</topic><topic>Genomes</topic><topic>Identification and classification</topic><topic>Machine Learning</topic><topic>Metabolism</topic><topic>Metagenome - genetics</topic><topic>Metagenomics</topic><topic>Metagenomics - methods</topic><topic>Methods</topic><topic>Methods and Resources</topic><topic>Predictions</topic><topic>Research and Analysis Methods</topic><topic>Taxonomy</topic><topic>Viral infections</topic><topic>Virulence</topic><topic>Viruses</topic><topic>Viruses - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roux, Simon</creatorcontrib><creatorcontrib>Camargo, Antonio Pedro</creatorcontrib><creatorcontrib>Coutinho, Felipe H</creatorcontrib><creatorcontrib>Dabdoub, Shareef M</creatorcontrib><creatorcontrib>Dutilh, Bas E</creatorcontrib><creatorcontrib>Nayfach, Stephen</creatorcontrib><creatorcontrib>Tritt, Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roux, Simon</au><au>Camargo, Antonio Pedro</au><au>Coutinho, Felipe H</au><au>Dabdoub, Shareef M</au><au>Dutilh, Bas E</au><au>Nayfach, Stephen</au><au>Tritt, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2023-04-21</date><risdate>2023</risdate><volume>21</volume><issue>4</issue><spage>e3002083</spage><epage>e3002083</epage><pages>e3002083-e3002083</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host association. Different computational approaches are available to predict the host(s) of uncultivated viruses based on their genome sequences, but thus far individual approaches are limited either in precision or in recall, i.e., for a number of viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a two-step framework that integrates multiple methods to reliably predict host taxonomy at the genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low false discovery rate. Based on a large dataset of metagenome-derived virus genomes from the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and guide further characterization of uncultivated viruses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37083735</pmid><doi>10.1371/journal.pbio.3002083</doi><orcidid>https://orcid.org/0000-0002-5831-5895</orcidid><orcidid>https://orcid.org/0000000258315895</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2023-04, Vol.21 (4), p.e3002083-e3002083 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2814430395 |
source | Open Access: DOAJ - Directory of Open Access Journals; Open Access: PubMed Central; PLoS; MEDLINE; EZB Electronic Journals Library |
subjects | Analysis Archaea Archaea - genetics Bacteria Bacteria - genetics Bacteriophages Benchmarks Biology and Life Sciences Computer and Information Sciences CRISPR Datasets Ecology and Environmental Sciences Engineering and Technology Gene sequencing Genome, Viral - genetics Genomes Identification and classification Machine Learning Metabolism Metagenome - genetics Metagenomics Metagenomics - methods Methods Methods and Resources Predictions Research and Analysis Methods Taxonomy Viral infections Virulence Viruses Viruses - genetics |
title | iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iPHoP:%20An%20integrated%20machine%20learning%20framework%20to%20maximize%20host%20prediction%20for%20metagenome-derived%20viruses%20of%20archaea%20and%20bacteria&rft.jtitle=PLoS%20biology&rft.au=Roux,%20Simon&rft.date=2023-04-21&rft.volume=21&rft.issue=4&rft.spage=e3002083&rft.epage=e3002083&rft.pages=e3002083-e3002083&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3002083&rft_dat=%3Cgale_plos_%3EA749467327%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814430395&rft_id=info:pmid/37083735&rft_galeid=A749467327&rft_doaj_id=oai_doaj_org_article_24ba197aa8c4423985995c843c6de95c&rfr_iscdi=true |