Graph-based extractive text summarization method for Hausa text
Automatic text summarization is one of the most promising solutions to the ever-growing challenges of textual data as it produces a shorter version of the original document with fewer bytes, but the same information as the original document. Despite the advancements in automatic text summarization r...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-05, Vol.18 (5), p.e0285376-e0285376 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0285376 |
---|---|
container_issue | 5 |
container_start_page | e0285376 |
container_title | PloS one |
container_volume | 18 |
creator | Bichi, Abdulkadir Abubakar Samsudin, Ruhaidah Hassan, Rohayanti Hasan, Layla Rasheed Abdallah Ado Rogo, Abubakar |
description | Automatic text summarization is one of the most promising solutions to the ever-growing challenges of textual data as it produces a shorter version of the original document with fewer bytes, but the same information as the original document. Despite the advancements in automatic text summarization research, research involving the development of automatic text summarization methods for documents written in Hausa, a Chadic language widely spoken in West Africa by approximately 150,000,000 people as either their first or second language, is still in early stages of development. This study proposes a novel graph-based extractive single-document summarization method for Hausa text by modifying the existing PageRank algorithm using the normalized common bigrams count between adjacent sentences as the initial vertex score. The proposed method is evaluated using a primarily collected Hausa summarization evaluation dataset comprising of 113 Hausa news articles on ROUGE evaluation toolkits. The proposed approach outperformed the standard methods using the same datasets. It outperformed the TextRank method by 2.1%, LexRank by 12.3%, centroid-based method by 19.5%, and BM25 method by 17.4%. |
doi_str_mv | 10.1371/journal.pone.0285376 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2811502248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748638007</galeid><doaj_id>oai_doaj_org_article_3cbbd9757d764bedaa507d77493fcf70</doaj_id><sourcerecordid>A748638007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693t-4124153937295d668c6a89f32418d7dbf65b2759464567ef8757098edf667ba43</originalsourceid><addsrcrecordid>eNqNkstq3DAUhk1padK0b1BaQ6G0i5lK1tWrEEKbDAQCvW2FbEkzGmxrItmh7dP3OOOEccmieGFx9J1f5_Jn2WuMlpgI_GkbhtjpZrkLnV2iQjIi-JPsGJekWPACkacH56PsRUpbhBiRnD_PjiCflZSWx9npRdS7zaLSyZrc_uqjrnt_a_Meznka2lZH_0f3PnR5a_tNMLkLMb_UQ9J3zMvsmdNNsq-m_0n248vn7-eXi6vri9X52dWi5iXpFxQXFDNSElGUzHAua65l6QhEpRGmcpxVhYCaOGVcWCcFE6iU1jjORaUpOcne7nV3TUhq6j2pQmLMUFFQCcRqT5igt2oXPZT-WwXt1V0gxLXSsfd1YxWpq8qU8IQRnFbWaM0QnAUtiaudQKB1Or02VK01te1gMM1MdH7T-Y1ah1uFEeaSMQ4KHyaFGG4Gm3rV-lTbptGdDcO-cJgGrAPQd_-gj7c3UWsNHfjOhXFXo6g6E1RyIhESQC0foeAztvU1OMV5iM8SPs4SgBnXuoYFJ7X69vX_2eufc_b9Abuxuuk3KTTD6KQ0B-kerGNIKVr3MGWM1Gj0-2mo0ehqMjqkvTnc0EPSvbPJX7uc9nQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811502248</pqid></control><display><type>article</type><title>Graph-based extractive text summarization method for Hausa text</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bichi, Abdulkadir Abubakar ; Samsudin, Ruhaidah ; Hassan, Rohayanti ; Hasan, Layla Rasheed Abdallah ; Ado Rogo, Abubakar</creator><creatorcontrib>Bichi, Abdulkadir Abubakar ; Samsudin, Ruhaidah ; Hassan, Rohayanti ; Hasan, Layla Rasheed Abdallah ; Ado Rogo, Abubakar</creatorcontrib><description>Automatic text summarization is one of the most promising solutions to the ever-growing challenges of textual data as it produces a shorter version of the original document with fewer bytes, but the same information as the original document. Despite the advancements in automatic text summarization research, research involving the development of automatic text summarization methods for documents written in Hausa, a Chadic language widely spoken in West Africa by approximately 150,000,000 people as either their first or second language, is still in early stages of development. This study proposes a novel graph-based extractive single-document summarization method for Hausa text by modifying the existing PageRank algorithm using the normalized common bigrams count between adjacent sentences as the initial vertex score. The proposed method is evaluated using a primarily collected Hausa summarization evaluation dataset comprising of 113 Hausa news articles on ROUGE evaluation toolkits. The proposed approach outperformed the standard methods using the same datasets. It outperformed the TextRank method by 2.1%, LexRank by 12.3%, centroid-based method by 19.5%, and BM25 method by 17.4%.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0285376</identifier><identifier>PMID: 37159449</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Africa, Western ; Algorithms ; Analysis ; Automatic testing equipment ; Biology and Life Sciences ; Centroids ; Computational linguistics ; Computer and Information Sciences ; Datasets ; Developmental stages ; Documents ; Engineering and Technology ; Evaluation ; Head ; Humans ; Language ; Language processing ; Natural language ; Natural language interfaces ; Physical Sciences ; Product reviews ; Research and Analysis Methods ; Search algorithms ; Semantics ; Sentences ; Social Sciences ; Writing</subject><ispartof>PloS one, 2023-05, Vol.18 (5), p.e0285376-e0285376</ispartof><rights>Copyright: © 2023 Bichi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Bichi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Bichi et al 2023 Bichi et al</rights><rights>2023 Bichi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c693t-4124153937295d668c6a89f32418d7dbf65b2759464567ef8757098edf667ba43</citedby><cites>FETCH-LOGICAL-c693t-4124153937295d668c6a89f32418d7dbf65b2759464567ef8757098edf667ba43</cites><orcidid>0000-0002-3920-7231 ; 0000-0002-5872-8315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168556/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168556/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37159449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bichi, Abdulkadir Abubakar</creatorcontrib><creatorcontrib>Samsudin, Ruhaidah</creatorcontrib><creatorcontrib>Hassan, Rohayanti</creatorcontrib><creatorcontrib>Hasan, Layla Rasheed Abdallah</creatorcontrib><creatorcontrib>Ado Rogo, Abubakar</creatorcontrib><title>Graph-based extractive text summarization method for Hausa text</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Automatic text summarization is one of the most promising solutions to the ever-growing challenges of textual data as it produces a shorter version of the original document with fewer bytes, but the same information as the original document. Despite the advancements in automatic text summarization research, research involving the development of automatic text summarization methods for documents written in Hausa, a Chadic language widely spoken in West Africa by approximately 150,000,000 people as either their first or second language, is still in early stages of development. This study proposes a novel graph-based extractive single-document summarization method for Hausa text by modifying the existing PageRank algorithm using the normalized common bigrams count between adjacent sentences as the initial vertex score. The proposed method is evaluated using a primarily collected Hausa summarization evaluation dataset comprising of 113 Hausa news articles on ROUGE evaluation toolkits. The proposed approach outperformed the standard methods using the same datasets. It outperformed the TextRank method by 2.1%, LexRank by 12.3%, centroid-based method by 19.5%, and BM25 method by 17.4%.</description><subject>Africa, Western</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Automatic testing equipment</subject><subject>Biology and Life Sciences</subject><subject>Centroids</subject><subject>Computational linguistics</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Developmental stages</subject><subject>Documents</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Head</subject><subject>Humans</subject><subject>Language</subject><subject>Language processing</subject><subject>Natural language</subject><subject>Natural language interfaces</subject><subject>Physical Sciences</subject><subject>Product reviews</subject><subject>Research and Analysis Methods</subject><subject>Search algorithms</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Social Sciences</subject><subject>Writing</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkstq3DAUhk1padK0b1BaQ6G0i5lK1tWrEEKbDAQCvW2FbEkzGmxrItmh7dP3OOOEccmieGFx9J1f5_Jn2WuMlpgI_GkbhtjpZrkLnV2iQjIi-JPsGJekWPACkacH56PsRUpbhBiRnD_PjiCflZSWx9npRdS7zaLSyZrc_uqjrnt_a_Meznka2lZH_0f3PnR5a_tNMLkLMb_UQ9J3zMvsmdNNsq-m_0n248vn7-eXi6vri9X52dWi5iXpFxQXFDNSElGUzHAua65l6QhEpRGmcpxVhYCaOGVcWCcFE6iU1jjORaUpOcne7nV3TUhq6j2pQmLMUFFQCcRqT5igt2oXPZT-WwXt1V0gxLXSsfd1YxWpq8qU8IQRnFbWaM0QnAUtiaudQKB1Or02VK01te1gMM1MdH7T-Y1ah1uFEeaSMQ4KHyaFGG4Gm3rV-lTbptGdDcO-cJgGrAPQd_-gj7c3UWsNHfjOhXFXo6g6E1RyIhESQC0foeAztvU1OMV5iM8SPs4SgBnXuoYFJ7X69vX_2eufc_b9Abuxuuk3KTTD6KQ0B-kerGNIKVr3MGWM1Gj0-2mo0ehqMjqkvTnc0EPSvbPJX7uc9nQ</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Bichi, Abdulkadir Abubakar</creator><creator>Samsudin, Ruhaidah</creator><creator>Hassan, Rohayanti</creator><creator>Hasan, Layla Rasheed Abdallah</creator><creator>Ado Rogo, Abubakar</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3920-7231</orcidid><orcidid>https://orcid.org/0000-0002-5872-8315</orcidid></search><sort><creationdate>20230509</creationdate><title>Graph-based extractive text summarization method for Hausa text</title><author>Bichi, Abdulkadir Abubakar ; Samsudin, Ruhaidah ; Hassan, Rohayanti ; Hasan, Layla Rasheed Abdallah ; Ado Rogo, Abubakar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693t-4124153937295d668c6a89f32418d7dbf65b2759464567ef8757098edf667ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Africa, Western</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Automatic testing equipment</topic><topic>Biology and Life Sciences</topic><topic>Centroids</topic><topic>Computational linguistics</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Developmental stages</topic><topic>Documents</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Head</topic><topic>Humans</topic><topic>Language</topic><topic>Language processing</topic><topic>Natural language</topic><topic>Natural language interfaces</topic><topic>Physical Sciences</topic><topic>Product reviews</topic><topic>Research and Analysis Methods</topic><topic>Search algorithms</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Social Sciences</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bichi, Abdulkadir Abubakar</creatorcontrib><creatorcontrib>Samsudin, Ruhaidah</creatorcontrib><creatorcontrib>Hassan, Rohayanti</creatorcontrib><creatorcontrib>Hasan, Layla Rasheed Abdallah</creatorcontrib><creatorcontrib>Ado Rogo, Abubakar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bichi, Abdulkadir Abubakar</au><au>Samsudin, Ruhaidah</au><au>Hassan, Rohayanti</au><au>Hasan, Layla Rasheed Abdallah</au><au>Ado Rogo, Abubakar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph-based extractive text summarization method for Hausa text</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-05-09</date><risdate>2023</risdate><volume>18</volume><issue>5</issue><spage>e0285376</spage><epage>e0285376</epage><pages>e0285376-e0285376</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Automatic text summarization is one of the most promising solutions to the ever-growing challenges of textual data as it produces a shorter version of the original document with fewer bytes, but the same information as the original document. Despite the advancements in automatic text summarization research, research involving the development of automatic text summarization methods for documents written in Hausa, a Chadic language widely spoken in West Africa by approximately 150,000,000 people as either their first or second language, is still in early stages of development. This study proposes a novel graph-based extractive single-document summarization method for Hausa text by modifying the existing PageRank algorithm using the normalized common bigrams count between adjacent sentences as the initial vertex score. The proposed method is evaluated using a primarily collected Hausa summarization evaluation dataset comprising of 113 Hausa news articles on ROUGE evaluation toolkits. The proposed approach outperformed the standard methods using the same datasets. It outperformed the TextRank method by 2.1%, LexRank by 12.3%, centroid-based method by 19.5%, and BM25 method by 17.4%.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37159449</pmid><doi>10.1371/journal.pone.0285376</doi><tpages>e0285376</tpages><orcidid>https://orcid.org/0000-0002-3920-7231</orcidid><orcidid>https://orcid.org/0000-0002-5872-8315</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-05, Vol.18 (5), p.e0285376-e0285376 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2811502248 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Africa, Western Algorithms Analysis Automatic testing equipment Biology and Life Sciences Centroids Computational linguistics Computer and Information Sciences Datasets Developmental stages Documents Engineering and Technology Evaluation Head Humans Language Language processing Natural language Natural language interfaces Physical Sciences Product reviews Research and Analysis Methods Search algorithms Semantics Sentences Social Sciences Writing |
title | Graph-based extractive text summarization method for Hausa text |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph-based%20extractive%20text%20summarization%20method%20for%20Hausa%20text&rft.jtitle=PloS%20one&rft.au=Bichi,%20Abdulkadir%20Abubakar&rft.date=2023-05-09&rft.volume=18&rft.issue=5&rft.spage=e0285376&rft.epage=e0285376&rft.pages=e0285376-e0285376&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0285376&rft_dat=%3Cgale_plos_%3EA748638007%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811502248&rft_id=info:pmid/37159449&rft_galeid=A748638007&rft_doaj_id=oai_doaj_org_article_3cbbd9757d764bedaa507d77493fcf70&rfr_iscdi=true |