Quantum spin models for numerosity perception

Humans share with animals, both vertebrates and invertebrates, the capacity to sense the number of items in their environment already at birth. The pervasiveness of this skill across the animal kingdom suggests that it should emerge in very simple populations of neurons. Current modelling literature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-04, Vol.18 (4), p.e0284610-e0284610
Hauptverfasser: Yago Malo, Jorge, Cicchini, Guido Marco, Morrone, Maria Concetta, Chiofalo, Maria Luisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0284610
container_issue 4
container_start_page e0284610
container_title PloS one
container_volume 18
creator Yago Malo, Jorge
Cicchini, Guido Marco
Morrone, Maria Concetta
Chiofalo, Maria Luisa
description Humans share with animals, both vertebrates and invertebrates, the capacity to sense the number of items in their environment already at birth. The pervasiveness of this skill across the animal kingdom suggests that it should emerge in very simple populations of neurons. Current modelling literature, however, has struggled to provide a simple architecture carrying out this task, with most proposals suggesting the emergence of number sense in multi-layered complex neural networks, and typically requiring supervised learning; while simple accumulator models fail to predict Weber's Law, a common trait of human and animal numerosity processing. We present a simple quantum spin model with all-to-all connectivity, where numerosity is encoded in the spectrum after stimulation with a number of transient signals occurring in a random or orderly temporal sequence. We use a paradigmatic simulational approach borrowed from the theory and methods of open quantum systems out of equilibrium, as a possible way to describe information processing in neural systems. Our method is able to capture many of the perceptual characteristics of numerosity in such systems. The frequency components of the magnetization spectra at harmonics of the system's tunneling frequency increase with the number of stimuli presented. The amplitude decoding of each spectrum, performed with an ideal-observer model, reveals that the system follows Weber's law. This contrasts with the well-known failure to reproduce Weber's law with linear system or accumulators models.
doi_str_mv 10.1371/journal.pone.0284610
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2806039370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746944139</galeid><doaj_id>oai_doaj_org_article_43c4d98cbbbd482c91617c81382d4bbb</doaj_id><sourcerecordid>A746944139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693t-d373d45cc36dacfc798f17d109c68b85b9d5179d7f21ef3ff0426d2c287561da3</originalsourceid><addsrcrecordid>eNqNkttq3DAQhk1paZJt36C0C4XQXnirk3W4KiH0sBAIPd4KWYddLbblSHZp3r7arhPWJRdFFxKjb_6Zkf6ieAHBCmIG3-3CGDvVrPrQ2RVAnFAIHhWnUGBUUgTw46PzSXGW0g6ACnNKnxYnmAHBAUCnRfllVN0wtsvU-27ZBmObtHQhLruxtTEkP9wuexu17QcfumfFE6eaZJ9P-6L48fHD98vP5dX1p_XlxVWpqcBDaTDDhlRaY2qUdpoJ7iAzEAhNec2rWpgKMmGYQ9A67BwgiBqkEWcVhUbhRfHqoNs3Iclp0iQRBxRgkbvPxPpAmKB2so--VfFWBuXl30CIG6ni4HVjJcGaGMF1XdeGcKQFpJBpDjFHhuRg1no_VRvr1hptuyGqZiY6v-n8Vm7CLwkBRFwwnBXeTAox3Iw2DbL1SdumUZ0N49Q4AwTyjL7-B314vInaqDyB71zIhfVeVF4wQgUhMIOLYvUAlZexrdfZF87n-Czh7SwhM4P9PWzUmJJcf_v6_-z1zzl7fsRurWqGbQrNuPdMmoPkAOrsrRStu39lCOTe1nevIfe2lpOtc9rL4x-6T7rzMf4DRa7xJQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806039370</pqid></control><display><type>article</type><title>Quantum spin models for numerosity perception</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yago Malo, Jorge ; Cicchini, Guido Marco ; Morrone, Maria Concetta ; Chiofalo, Maria Luisa</creator><contributor>Lorenzo, Salvatore</contributor><creatorcontrib>Yago Malo, Jorge ; Cicchini, Guido Marco ; Morrone, Maria Concetta ; Chiofalo, Maria Luisa ; Lorenzo, Salvatore</creatorcontrib><description>Humans share with animals, both vertebrates and invertebrates, the capacity to sense the number of items in their environment already at birth. The pervasiveness of this skill across the animal kingdom suggests that it should emerge in very simple populations of neurons. Current modelling literature, however, has struggled to provide a simple architecture carrying out this task, with most proposals suggesting the emergence of number sense in multi-layered complex neural networks, and typically requiring supervised learning; while simple accumulator models fail to predict Weber's Law, a common trait of human and animal numerosity processing. We present a simple quantum spin model with all-to-all connectivity, where numerosity is encoded in the spectrum after stimulation with a number of transient signals occurring in a random or orderly temporal sequence. We use a paradigmatic simulational approach borrowed from the theory and methods of open quantum systems out of equilibrium, as a possible way to describe information processing in neural systems. Our method is able to capture many of the perceptual characteristics of numerosity in such systems. The frequency components of the magnetization spectra at harmonics of the system's tunneling frequency increase with the number of stimuli presented. The amplitude decoding of each spectrum, performed with an ideal-observer model, reveals that the system follows Weber's law. This contrasts with the well-known failure to reproduce Weber's law with linear system or accumulators models.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0284610</identifier><identifier>PMID: 37098002</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accumulators ; Analysis ; Animals ; Biology and Life Sciences ; Brain research ; Cognition ; Computer and Information Sciences ; Connectivity ; Data processing ; Engineering and Technology ; Evaluation ; Humans ; Infant, Newborn ; Information processing ; Laws, regulations and rules ; Learning strategies ; Mechanics ; Methods ; Modelling ; Multilayers ; Neural networks ; Neural Networks, Computer ; Neurons ; Neurons - physiology ; Neurophysiology ; Perception ; Physical Sciences ; Quantum field theory ; Quantum theory ; Research and Analysis Methods ; Social Sciences ; Supervised learning ; Vertebrates ; Visual Perception - physiology</subject><ispartof>PloS one, 2023-04, Vol.18 (4), p.e0284610-e0284610</ispartof><rights>Copyright: © 2023 Yago Malo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Yago Malo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Yago Malo et al 2023 Yago Malo et al</rights><rights>2023 Yago Malo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c693t-d373d45cc36dacfc798f17d109c68b85b9d5179d7f21ef3ff0426d2c287561da3</citedby><cites>FETCH-LOGICAL-c693t-d373d45cc36dacfc798f17d109c68b85b9d5179d7f21ef3ff0426d2c287561da3</cites><orcidid>0000-0001-5588-9183 ; 0000-0002-6992-5963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128973/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128973/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37098002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lorenzo, Salvatore</contributor><creatorcontrib>Yago Malo, Jorge</creatorcontrib><creatorcontrib>Cicchini, Guido Marco</creatorcontrib><creatorcontrib>Morrone, Maria Concetta</creatorcontrib><creatorcontrib>Chiofalo, Maria Luisa</creatorcontrib><title>Quantum spin models for numerosity perception</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Humans share with animals, both vertebrates and invertebrates, the capacity to sense the number of items in their environment already at birth. The pervasiveness of this skill across the animal kingdom suggests that it should emerge in very simple populations of neurons. Current modelling literature, however, has struggled to provide a simple architecture carrying out this task, with most proposals suggesting the emergence of number sense in multi-layered complex neural networks, and typically requiring supervised learning; while simple accumulator models fail to predict Weber's Law, a common trait of human and animal numerosity processing. We present a simple quantum spin model with all-to-all connectivity, where numerosity is encoded in the spectrum after stimulation with a number of transient signals occurring in a random or orderly temporal sequence. We use a paradigmatic simulational approach borrowed from the theory and methods of open quantum systems out of equilibrium, as a possible way to describe information processing in neural systems. Our method is able to capture many of the perceptual characteristics of numerosity in such systems. The frequency components of the magnetization spectra at harmonics of the system's tunneling frequency increase with the number of stimuli presented. The amplitude decoding of each spectrum, performed with an ideal-observer model, reveals that the system follows Weber's law. This contrasts with the well-known failure to reproduce Weber's law with linear system or accumulators models.</description><subject>Accumulators</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Brain research</subject><subject>Cognition</subject><subject>Computer and Information Sciences</subject><subject>Connectivity</subject><subject>Data processing</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Information processing</subject><subject>Laws, regulations and rules</subject><subject>Learning strategies</subject><subject>Mechanics</subject><subject>Methods</subject><subject>Modelling</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurophysiology</subject><subject>Perception</subject><subject>Physical Sciences</subject><subject>Quantum field theory</subject><subject>Quantum theory</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Supervised learning</subject><subject>Vertebrates</subject><subject>Visual Perception - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkttq3DAQhk1paZJt36C0C4XQXnirk3W4KiH0sBAIPd4KWYddLbblSHZp3r7arhPWJRdFFxKjb_6Zkf6ieAHBCmIG3-3CGDvVrPrQ2RVAnFAIHhWnUGBUUgTw46PzSXGW0g6ACnNKnxYnmAHBAUCnRfllVN0wtsvU-27ZBmObtHQhLruxtTEkP9wuexu17QcfumfFE6eaZJ9P-6L48fHD98vP5dX1p_XlxVWpqcBDaTDDhlRaY2qUdpoJ7iAzEAhNec2rWpgKMmGYQ9A67BwgiBqkEWcVhUbhRfHqoNs3Iclp0iQRBxRgkbvPxPpAmKB2so--VfFWBuXl30CIG6ni4HVjJcGaGMF1XdeGcKQFpJBpDjFHhuRg1no_VRvr1hptuyGqZiY6v-n8Vm7CLwkBRFwwnBXeTAox3Iw2DbL1SdumUZ0N49Q4AwTyjL7-B314vInaqDyB71zIhfVeVF4wQgUhMIOLYvUAlZexrdfZF87n-Czh7SwhM4P9PWzUmJJcf_v6_-z1zzl7fsRurWqGbQrNuPdMmoPkAOrsrRStu39lCOTe1nevIfe2lpOtc9rL4x-6T7rzMf4DRa7xJQ</recordid><startdate>20230425</startdate><enddate>20230425</enddate><creator>Yago Malo, Jorge</creator><creator>Cicchini, Guido Marco</creator><creator>Morrone, Maria Concetta</creator><creator>Chiofalo, Maria Luisa</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5588-9183</orcidid><orcidid>https://orcid.org/0000-0002-6992-5963</orcidid></search><sort><creationdate>20230425</creationdate><title>Quantum spin models for numerosity perception</title><author>Yago Malo, Jorge ; Cicchini, Guido Marco ; Morrone, Maria Concetta ; Chiofalo, Maria Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693t-d373d45cc36dacfc798f17d109c68b85b9d5179d7f21ef3ff0426d2c287561da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accumulators</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Brain research</topic><topic>Cognition</topic><topic>Computer and Information Sciences</topic><topic>Connectivity</topic><topic>Data processing</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Information processing</topic><topic>Laws, regulations and rules</topic><topic>Learning strategies</topic><topic>Mechanics</topic><topic>Methods</topic><topic>Modelling</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurophysiology</topic><topic>Perception</topic><topic>Physical Sciences</topic><topic>Quantum field theory</topic><topic>Quantum theory</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Supervised learning</topic><topic>Vertebrates</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yago Malo, Jorge</creatorcontrib><creatorcontrib>Cicchini, Guido Marco</creatorcontrib><creatorcontrib>Morrone, Maria Concetta</creatorcontrib><creatorcontrib>Chiofalo, Maria Luisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yago Malo, Jorge</au><au>Cicchini, Guido Marco</au><au>Morrone, Maria Concetta</au><au>Chiofalo, Maria Luisa</au><au>Lorenzo, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum spin models for numerosity perception</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-04-25</date><risdate>2023</risdate><volume>18</volume><issue>4</issue><spage>e0284610</spage><epage>e0284610</epage><pages>e0284610-e0284610</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Humans share with animals, both vertebrates and invertebrates, the capacity to sense the number of items in their environment already at birth. The pervasiveness of this skill across the animal kingdom suggests that it should emerge in very simple populations of neurons. Current modelling literature, however, has struggled to provide a simple architecture carrying out this task, with most proposals suggesting the emergence of number sense in multi-layered complex neural networks, and typically requiring supervised learning; while simple accumulator models fail to predict Weber's Law, a common trait of human and animal numerosity processing. We present a simple quantum spin model with all-to-all connectivity, where numerosity is encoded in the spectrum after stimulation with a number of transient signals occurring in a random or orderly temporal sequence. We use a paradigmatic simulational approach borrowed from the theory and methods of open quantum systems out of equilibrium, as a possible way to describe information processing in neural systems. Our method is able to capture many of the perceptual characteristics of numerosity in such systems. The frequency components of the magnetization spectra at harmonics of the system's tunneling frequency increase with the number of stimuli presented. The amplitude decoding of each spectrum, performed with an ideal-observer model, reveals that the system follows Weber's law. This contrasts with the well-known failure to reproduce Weber's law with linear system or accumulators models.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37098002</pmid><doi>10.1371/journal.pone.0284610</doi><tpages>e0284610</tpages><orcidid>https://orcid.org/0000-0001-5588-9183</orcidid><orcidid>https://orcid.org/0000-0002-6992-5963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-04, Vol.18 (4), p.e0284610-e0284610
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2806039370
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accumulators
Analysis
Animals
Biology and Life Sciences
Brain research
Cognition
Computer and Information Sciences
Connectivity
Data processing
Engineering and Technology
Evaluation
Humans
Infant, Newborn
Information processing
Laws, regulations and rules
Learning strategies
Mechanics
Methods
Modelling
Multilayers
Neural networks
Neural Networks, Computer
Neurons
Neurons - physiology
Neurophysiology
Perception
Physical Sciences
Quantum field theory
Quantum theory
Research and Analysis Methods
Social Sciences
Supervised learning
Vertebrates
Visual Perception - physiology
title Quantum spin models for numerosity perception
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20spin%20models%20for%20numerosity%20perception&rft.jtitle=PloS%20one&rft.au=Yago%20Malo,%20Jorge&rft.date=2023-04-25&rft.volume=18&rft.issue=4&rft.spage=e0284610&rft.epage=e0284610&rft.pages=e0284610-e0284610&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0284610&rft_dat=%3Cgale_plos_%3EA746944139%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806039370&rft_id=info:pmid/37098002&rft_galeid=A746944139&rft_doaj_id=oai_doaj_org_article_43c4d98cbbbd482c91617c81382d4bbb&rfr_iscdi=true