OSCAR: Optimal subset cardinality regression using the L0-pseudonorm with applications to prognostic modelling of prostate cancer
In many real-world applications, such as those based on electronic health records, prognostic prediction of patient survival is based on heterogeneous sets of clinical laboratory measurements. To address the trade-off between the predictive accuracy of a prognostic model and the costs related to its...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2023-03, Vol.19 (3), p.e1010333 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e1010333 |
container_title | PLoS computational biology |
container_volume | 19 |
creator | Halkola, Anni S Joki, Kaisa Mirtti, Tuomas Mäkelä, Marko M Aittokallio, Tero Laajala, Teemu D |
description | In many real-world applications, such as those based on electronic health records, prognostic prediction of patient survival is based on heterogeneous sets of clinical laboratory measurements. To address the trade-off between the predictive accuracy of a prognostic model and the costs related to its clinical implementation, we propose an optimized L0-pseudonorm approach to learn sparse solutions in multivariable regression. The model sparsity is maintained by restricting the number of nonzero coefficients in the model with a cardinality constraint, which makes the optimization problem NP-hard. In addition, we generalize the cardinality constraint for grouped feature selection, which makes it possible to identify key sets of predictors that may be measured together in a kit in clinical practice. We demonstrate the operation of our cardinality constraint-based feature subset selection method, named OSCAR, in the context of prognostic prediction of prostate cancer patients, where it enables one to determine the key explanatory predictors at different levels of model sparsity. We further explore how the model sparsity affects the model accuracy and implementation cost. Lastly, we demonstrate generalization of the presented methodology to high-dimensional transcriptomics data. |
doi_str_mv | 10.1371/journal.pcbi.1010333 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2802064041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744742151</galeid><doaj_id>oai_doaj_org_article_95601469c59a46ffae4d1cb8885b145e</doaj_id><sourcerecordid>A744742151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c687t-af3d57ee086db9e1d9cd575b08e72e643e4883ba93f45b3203b207a99a40cc283</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBY4gKHXezYTmwuqKr4qFRRqYWz5TiT1FU2DrYD9Mg_Z0K3VRf1giIl9viZdzKvNUXxnNE14zV7exnmONphPbnGrxlllHP-oNhnUvJVzaV6eGe9VzxJ6ZJSXOrqcbHHK6Vrzdh-8fv0_Ojw7B05nbLf2IGkuUmQibOx9aju8xWJ0EdIyYeRzMmPPckXQE7oakowt2EMcUN--nxB7DQN3tmMYCI5kCmGfgwpe0c2oYVhWHJDt8RTthmwyOggPi0edXZI8Gz7PSi-ffzw9ejz6uT00_HR4cnKVarOK9vxVtYAVFVto4G12uFeNlRBXUIlOAileGM174RseEl5U9Laam0Fda5U_KB4ea07DSGZrXvJlIqWtBJUMCSOr4k22EszRTQkXplgvfkbCLE3NmI7AxgtK8pEpZ1E_arrLIiWuUYpJRsmJKDW-221udlA62DM0Q47orsno78wffhhGN5SKalEBXKt4KJHE0eDTls8VrLEd82FRuT1tkgM32dI2Wx8cui0HSHM2FutKqpLphe1V_-g9zuwpXqLTfqxC_hvbhE1h7UQtSiZXKj1PRQ-LWy8CyN0HuM7CW92EpDJ8Cv3dk7JHJ-f_Qf7ZZcVNxaFlCJ0t_4yapYhuWnSLENitkOCaS_u3s1t0s1U8D928Ayu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802064041</pqid></control><display><type>article</type><title>OSCAR: Optimal subset cardinality regression using the L0-pseudonorm with applications to prognostic modelling of prostate cancer</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Halkola, Anni S ; Joki, Kaisa ; Mirtti, Tuomas ; Mäkelä, Marko M ; Aittokallio, Tero ; Laajala, Teemu D</creator><contributor>Zhang, Shihua</contributor><creatorcontrib>Halkola, Anni S ; Joki, Kaisa ; Mirtti, Tuomas ; Mäkelä, Marko M ; Aittokallio, Tero ; Laajala, Teemu D ; Zhang, Shihua</creatorcontrib><description>In many real-world applications, such as those based on electronic health records, prognostic prediction of patient survival is based on heterogeneous sets of clinical laboratory measurements. To address the trade-off between the predictive accuracy of a prognostic model and the costs related to its clinical implementation, we propose an optimized L0-pseudonorm approach to learn sparse solutions in multivariable regression. The model sparsity is maintained by restricting the number of nonzero coefficients in the model with a cardinality constraint, which makes the optimization problem NP-hard. In addition, we generalize the cardinality constraint for grouped feature selection, which makes it possible to identify key sets of predictors that may be measured together in a kit in clinical practice. We demonstrate the operation of our cardinality constraint-based feature subset selection method, named OSCAR, in the context of prognostic prediction of prostate cancer patients, where it enables one to determine the key explanatory predictors at different levels of model sparsity. We further explore how the model sparsity affects the model accuracy and implementation cost. Lastly, we demonstrate generalization of the presented methodology to high-dimensional transcriptomics data.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010333</identifier><identifier>PMID: 36897911</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Approximation ; Biology and Life Sciences ; Cancer therapies ; Clinical medicine ; Constraint modelling ; Electronic health records ; Electronic medical records ; Feature selection ; Gene Expression Profiling ; Generalized linear models ; Humans ; Kidney cancer ; Laboratories ; Male ; Mathematical optimization ; Medical laboratories ; Medical prognosis ; Medicine and Health Sciences ; Model accuracy ; Mortality ; Optimization ; Patients ; Physical Sciences ; Prognosis ; Prostate cancer ; Prostatic Neoplasms - genetics ; Regression analysis ; Regression models ; Regularization methods ; Research and Analysis Methods ; Technology application ; Transcriptomics</subject><ispartof>PLoS computational biology, 2023-03, Vol.19 (3), p.e1010333</ispartof><rights>Copyright: © 2023 Halkola et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Halkola et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2023 Halkola et al 2023 Halkola et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c687t-af3d57ee086db9e1d9cd575b08e72e643e4883ba93f45b3203b207a99a40cc283</citedby><cites>FETCH-LOGICAL-c687t-af3d57ee086db9e1d9cd575b08e72e643e4883ba93f45b3203b207a99a40cc283</cites><orcidid>0000-0002-0886-9769 ; 0000-0002-7016-7354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032505/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032505/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,26566,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36897911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Shihua</contributor><creatorcontrib>Halkola, Anni S</creatorcontrib><creatorcontrib>Joki, Kaisa</creatorcontrib><creatorcontrib>Mirtti, Tuomas</creatorcontrib><creatorcontrib>Mäkelä, Marko M</creatorcontrib><creatorcontrib>Aittokallio, Tero</creatorcontrib><creatorcontrib>Laajala, Teemu D</creatorcontrib><title>OSCAR: Optimal subset cardinality regression using the L0-pseudonorm with applications to prognostic modelling of prostate cancer</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>In many real-world applications, such as those based on electronic health records, prognostic prediction of patient survival is based on heterogeneous sets of clinical laboratory measurements. To address the trade-off between the predictive accuracy of a prognostic model and the costs related to its clinical implementation, we propose an optimized L0-pseudonorm approach to learn sparse solutions in multivariable regression. The model sparsity is maintained by restricting the number of nonzero coefficients in the model with a cardinality constraint, which makes the optimization problem NP-hard. In addition, we generalize the cardinality constraint for grouped feature selection, which makes it possible to identify key sets of predictors that may be measured together in a kit in clinical practice. We demonstrate the operation of our cardinality constraint-based feature subset selection method, named OSCAR, in the context of prognostic prediction of prostate cancer patients, where it enables one to determine the key explanatory predictors at different levels of model sparsity. We further explore how the model sparsity affects the model accuracy and implementation cost. Lastly, we demonstrate generalization of the presented methodology to high-dimensional transcriptomics data.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Biology and Life Sciences</subject><subject>Cancer therapies</subject><subject>Clinical medicine</subject><subject>Constraint modelling</subject><subject>Electronic health records</subject><subject>Electronic medical records</subject><subject>Feature selection</subject><subject>Gene Expression Profiling</subject><subject>Generalized linear models</subject><subject>Humans</subject><subject>Kidney cancer</subject><subject>Laboratories</subject><subject>Male</subject><subject>Mathematical optimization</subject><subject>Medical laboratories</subject><subject>Medical prognosis</subject><subject>Medicine and Health Sciences</subject><subject>Model accuracy</subject><subject>Mortality</subject><subject>Optimization</subject><subject>Patients</subject><subject>Physical Sciences</subject><subject>Prognosis</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Regularization methods</subject><subject>Research and Analysis Methods</subject><subject>Technology application</subject><subject>Transcriptomics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBY4gKHXezYTmwuqKr4qFRRqYWz5TiT1FU2DrYD9Mg_Z0K3VRf1giIl9viZdzKvNUXxnNE14zV7exnmONphPbnGrxlllHP-oNhnUvJVzaV6eGe9VzxJ6ZJSXOrqcbHHK6Vrzdh-8fv0_Ojw7B05nbLf2IGkuUmQibOx9aju8xWJ0EdIyYeRzMmPPckXQE7oakowt2EMcUN--nxB7DQN3tmMYCI5kCmGfgwpe0c2oYVhWHJDt8RTthmwyOggPi0edXZI8Gz7PSi-ffzw9ejz6uT00_HR4cnKVarOK9vxVtYAVFVto4G12uFeNlRBXUIlOAileGM174RseEl5U9Laam0Fda5U_KB4ea07DSGZrXvJlIqWtBJUMCSOr4k22EszRTQkXplgvfkbCLE3NmI7AxgtK8pEpZ1E_arrLIiWuUYpJRsmJKDW-221udlA62DM0Q47orsno78wffhhGN5SKalEBXKt4KJHE0eDTls8VrLEd82FRuT1tkgM32dI2Wx8cui0HSHM2FutKqpLphe1V_-g9zuwpXqLTfqxC_hvbhE1h7UQtSiZXKj1PRQ-LWy8CyN0HuM7CW92EpDJ8Cv3dk7JHJ-f_Qf7ZZcVNxaFlCJ0t_4yapYhuWnSLENitkOCaS_u3s1t0s1U8D928Ayu</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Halkola, Anni S</creator><creator>Joki, Kaisa</creator><creator>Mirtti, Tuomas</creator><creator>Mäkelä, Marko M</creator><creator>Aittokallio, Tero</creator><creator>Laajala, Teemu D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0886-9769</orcidid><orcidid>https://orcid.org/0000-0002-7016-7354</orcidid></search><sort><creationdate>20230301</creationdate><title>OSCAR: Optimal subset cardinality regression using the L0-pseudonorm with applications to prognostic modelling of prostate cancer</title><author>Halkola, Anni S ; Joki, Kaisa ; Mirtti, Tuomas ; Mäkelä, Marko M ; Aittokallio, Tero ; Laajala, Teemu D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c687t-af3d57ee086db9e1d9cd575b08e72e643e4883ba93f45b3203b207a99a40cc283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Biology and Life Sciences</topic><topic>Cancer therapies</topic><topic>Clinical medicine</topic><topic>Constraint modelling</topic><topic>Electronic health records</topic><topic>Electronic medical records</topic><topic>Feature selection</topic><topic>Gene Expression Profiling</topic><topic>Generalized linear models</topic><topic>Humans</topic><topic>Kidney cancer</topic><topic>Laboratories</topic><topic>Male</topic><topic>Mathematical optimization</topic><topic>Medical laboratories</topic><topic>Medical prognosis</topic><topic>Medicine and Health Sciences</topic><topic>Model accuracy</topic><topic>Mortality</topic><topic>Optimization</topic><topic>Patients</topic><topic>Physical Sciences</topic><topic>Prognosis</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Regularization methods</topic><topic>Research and Analysis Methods</topic><topic>Technology application</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halkola, Anni S</creatorcontrib><creatorcontrib>Joki, Kaisa</creatorcontrib><creatorcontrib>Mirtti, Tuomas</creatorcontrib><creatorcontrib>Mäkelä, Marko M</creatorcontrib><creatorcontrib>Aittokallio, Tero</creatorcontrib><creatorcontrib>Laajala, Teemu D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halkola, Anni S</au><au>Joki, Kaisa</au><au>Mirtti, Tuomas</au><au>Mäkelä, Marko M</au><au>Aittokallio, Tero</au><au>Laajala, Teemu D</au><au>Zhang, Shihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OSCAR: Optimal subset cardinality regression using the L0-pseudonorm with applications to prognostic modelling of prostate cancer</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>19</volume><issue>3</issue><spage>e1010333</spage><pages>e1010333-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>In many real-world applications, such as those based on electronic health records, prognostic prediction of patient survival is based on heterogeneous sets of clinical laboratory measurements. To address the trade-off between the predictive accuracy of a prognostic model and the costs related to its clinical implementation, we propose an optimized L0-pseudonorm approach to learn sparse solutions in multivariable regression. The model sparsity is maintained by restricting the number of nonzero coefficients in the model with a cardinality constraint, which makes the optimization problem NP-hard. In addition, we generalize the cardinality constraint for grouped feature selection, which makes it possible to identify key sets of predictors that may be measured together in a kit in clinical practice. We demonstrate the operation of our cardinality constraint-based feature subset selection method, named OSCAR, in the context of prognostic prediction of prostate cancer patients, where it enables one to determine the key explanatory predictors at different levels of model sparsity. We further explore how the model sparsity affects the model accuracy and implementation cost. Lastly, we demonstrate generalization of the presented methodology to high-dimensional transcriptomics data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36897911</pmid><doi>10.1371/journal.pcbi.1010333</doi><tpages>e1010333</tpages><orcidid>https://orcid.org/0000-0002-0886-9769</orcidid><orcidid>https://orcid.org/0000-0002-7016-7354</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2023-03, Vol.19 (3), p.e1010333 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2802064041 |
source | MEDLINE; NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Accuracy Algorithms Approximation Biology and Life Sciences Cancer therapies Clinical medicine Constraint modelling Electronic health records Electronic medical records Feature selection Gene Expression Profiling Generalized linear models Humans Kidney cancer Laboratories Male Mathematical optimization Medical laboratories Medical prognosis Medicine and Health Sciences Model accuracy Mortality Optimization Patients Physical Sciences Prognosis Prostate cancer Prostatic Neoplasms - genetics Regression analysis Regression models Regularization methods Research and Analysis Methods Technology application Transcriptomics |
title | OSCAR: Optimal subset cardinality regression using the L0-pseudonorm with applications to prognostic modelling of prostate cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OSCAR:%20Optimal%20subset%20cardinality%20regression%20using%20the%20L0-pseudonorm%20with%20applications%20to%20prognostic%20modelling%20of%20prostate%20cancer&rft.jtitle=PLoS%20computational%20biology&rft.au=Halkola,%20Anni%20S&rft.date=2023-03-01&rft.volume=19&rft.issue=3&rft.spage=e1010333&rft.pages=e1010333-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010333&rft_dat=%3Cgale_plos_%3EA744742151%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802064041&rft_id=info:pmid/36897911&rft_galeid=A744742151&rft_doaj_id=oai_doaj_org_article_95601469c59a46ffae4d1cb8885b145e&rfr_iscdi=true |