Endogenous salicylic acid suppresses de novo root regeneration from leaf explants

Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2023-03, Vol.19 (3), p.e1010636-e1010636
Hauptverfasser: Tran, Sorrel, Ison, Madalene, Ferreira Dias, Nathália Cássia, Ortega, Maria Andrea, Chen, Yun-Fan Stephanie, Peper, Alan, Hu, Lanxi, Xu, Dawei, Mozaffari, Khadijeh, Severns, Paul M, Yao, Yao, Tsai, Chung-Jui, Teixeira, Paulo José Pereira Lima, Yang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010636
container_issue 3
container_start_page e1010636
container_title PLoS genetics
container_volume 19
creator Tran, Sorrel
Ison, Madalene
Ferreira Dias, Nathália Cássia
Ortega, Maria Andrea
Chen, Yun-Fan Stephanie
Peper, Alan
Hu, Lanxi
Xu, Dawei
Mozaffari, Khadijeh
Severns, Paul M
Yao, Yao
Tsai, Chung-Jui
Teixeira, Paulo José Pereira Lima
Yang, Li
description Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.
doi_str_mv 10.1371/journal.pgen.1010636
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2802053467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744741152</galeid><doaj_id>oai_doaj_org_article_512347d0bf17445586d6924b5350841f</doaj_id><sourcerecordid>A744741152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-5a8f4beb7ed4b70e5a1a2e9de4eac828db147d6a6497e3d6fcc793316b9b6bb83</originalsourceid><addsrcrecordid>eNqVk21rFDEQxxdRbD39BqILgtQXdyabx30lpbR6UCw-vg15mL3bY2-zJrul_fbmvG25lb5QQkiY_OY_zEwmy15itMBE4PcbP4RWN4tuBe0CI4w44Y-yY8wYmQuK6OOD-1H2LMYNQoTJUjzNjgiXTBDJj7Mv563zScEPMY-6qe1t2rm2tcvj0HUBYoSYO8hbf-3z4H2fB0g8BN3Xvs2r4Ld5A7rK4aZrdNvH59mTSjcRXoznLPtxcf797NP88urj8uz0cm5FIfo507KiBowAR41AwDTWBZQOKGgrC-kMpsJxzWkpgDheWStKQjA3peHGSDLLXu91u8ZHNVYjqkKiAjFCuUjEck84rzeqC_VWh1vlda3-GHxYKR362jagGC5ICodMhQWljEnueFlQwwhDkuIqaX0Yow1mC85C2wfdTESnL229Vit_rTBKrWEcJ4WTUSH4XwPEXm3raKFJRYNUfVUIiQtMUcpylr35C304vZFa6ZRB3VY-BbY7UXWakhAUY1YkavEAlZaDbW19C1Wd7BOHdxOHxPRw06_0EKNafvv6H-znf2evfk7ZtwfsGnTTr6Nvht2Xi1OQ7kEbfIwBqvuOYKR2Y3JXObUbEzWOSXJ7ddjNe6e7uSC_AbGXC9U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802053467</pqid></control><display><type>article</type><title>Endogenous salicylic acid suppresses de novo root regeneration from leaf explants</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tran, Sorrel ; Ison, Madalene ; Ferreira Dias, Nathália Cássia ; Ortega, Maria Andrea ; Chen, Yun-Fan Stephanie ; Peper, Alan ; Hu, Lanxi ; Xu, Dawei ; Mozaffari, Khadijeh ; Severns, Paul M ; Yao, Yao ; Tsai, Chung-Jui ; Teixeira, Paulo José Pereira Lima ; Yang, Li</creator><contributor>Köhler, Claudia</contributor><creatorcontrib>Tran, Sorrel ; Ison, Madalene ; Ferreira Dias, Nathália Cássia ; Ortega, Maria Andrea ; Chen, Yun-Fan Stephanie ; Peper, Alan ; Hu, Lanxi ; Xu, Dawei ; Mozaffari, Khadijeh ; Severns, Paul M ; Yao, Yao ; Tsai, Chung-Jui ; Teixeira, Paulo José Pereira Lima ; Yang, Li ; Köhler, Claudia</creatorcontrib><description>Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010636</identifier><identifier>PMID: 36857386</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; Auxin ; Biology and Life Sciences ; Biosynthesis ; Defense industry ; Dosage and administration ; Environmental aspects ; Experiments ; Explants ; Foliage plants ; Gene Expression Regulation, Plant ; Genes ; Genetic aspects ; Growth ; Instrument industry ; Leaves ; Organogenesis ; Pathogens ; Phenols ; Plant Growth Regulators - metabolism ; Plant Growth Regulators - pharmacology ; Plant hormones ; Plant Leaves - metabolism ; Plant Roots - genetics ; Plant Roots - metabolism ; Research and Analysis Methods ; Roots (Botany) ; Salicylic acid ; Salicylic Acid - metabolism ; Transcription factors ; Wounding</subject><ispartof>PLoS genetics, 2023-03, Vol.19 (3), p.e1010636-e1010636</ispartof><rights>Copyright: © 2023 Tran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Tran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Tran et al 2023 Tran et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-5a8f4beb7ed4b70e5a1a2e9de4eac828db147d6a6497e3d6fcc793316b9b6bb83</citedby><cites>FETCH-LOGICAL-c727t-5a8f4beb7ed4b70e5a1a2e9de4eac828db147d6a6497e3d6fcc793316b9b6bb83</cites><orcidid>0000-0002-2552-9635 ; 0000-0001-8434-6532 ; 0000-0002-8906-7070 ; 0000-0002-9282-7704 ; 0000-0002-1493-8871 ; 0000-0003-3665-544X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010561/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010561/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36857386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Köhler, Claudia</contributor><creatorcontrib>Tran, Sorrel</creatorcontrib><creatorcontrib>Ison, Madalene</creatorcontrib><creatorcontrib>Ferreira Dias, Nathália Cássia</creatorcontrib><creatorcontrib>Ortega, Maria Andrea</creatorcontrib><creatorcontrib>Chen, Yun-Fan Stephanie</creatorcontrib><creatorcontrib>Peper, Alan</creatorcontrib><creatorcontrib>Hu, Lanxi</creatorcontrib><creatorcontrib>Xu, Dawei</creatorcontrib><creatorcontrib>Mozaffari, Khadijeh</creatorcontrib><creatorcontrib>Severns, Paul M</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Tsai, Chung-Jui</creatorcontrib><creatorcontrib>Teixeira, Paulo José Pereira Lima</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><title>Endogenous salicylic acid suppresses de novo root regeneration from leaf explants</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.</description><subject>Analysis</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Auxin</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Defense industry</subject><subject>Dosage and administration</subject><subject>Environmental aspects</subject><subject>Experiments</subject><subject>Explants</subject><subject>Foliage plants</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Growth</subject><subject>Instrument industry</subject><subject>Leaves</subject><subject>Organogenesis</subject><subject>Pathogens</subject><subject>Phenols</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant hormones</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Roots (Botany)</subject><subject>Salicylic acid</subject><subject>Salicylic Acid - metabolism</subject><subject>Transcription factors</subject><subject>Wounding</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk21rFDEQxxdRbD39BqILgtQXdyabx30lpbR6UCw-vg15mL3bY2-zJrul_fbmvG25lb5QQkiY_OY_zEwmy15itMBE4PcbP4RWN4tuBe0CI4w44Y-yY8wYmQuK6OOD-1H2LMYNQoTJUjzNjgiXTBDJj7Mv563zScEPMY-6qe1t2rm2tcvj0HUBYoSYO8hbf-3z4H2fB0g8BN3Xvs2r4Ld5A7rK4aZrdNvH59mTSjcRXoznLPtxcf797NP88urj8uz0cm5FIfo507KiBowAR41AwDTWBZQOKGgrC-kMpsJxzWkpgDheWStKQjA3peHGSDLLXu91u8ZHNVYjqkKiAjFCuUjEck84rzeqC_VWh1vlda3-GHxYKR362jagGC5ICodMhQWljEnueFlQwwhDkuIqaX0Yow1mC85C2wfdTESnL229Vit_rTBKrWEcJ4WTUSH4XwPEXm3raKFJRYNUfVUIiQtMUcpylr35C304vZFa6ZRB3VY-BbY7UXWakhAUY1YkavEAlZaDbW19C1Wd7BOHdxOHxPRw06_0EKNafvv6H-znf2evfk7ZtwfsGnTTr6Nvht2Xi1OQ7kEbfIwBqvuOYKR2Y3JXObUbEzWOSXJ7ddjNe6e7uSC_AbGXC9U</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Tran, Sorrel</creator><creator>Ison, Madalene</creator><creator>Ferreira Dias, Nathália Cássia</creator><creator>Ortega, Maria Andrea</creator><creator>Chen, Yun-Fan Stephanie</creator><creator>Peper, Alan</creator><creator>Hu, Lanxi</creator><creator>Xu, Dawei</creator><creator>Mozaffari, Khadijeh</creator><creator>Severns, Paul M</creator><creator>Yao, Yao</creator><creator>Tsai, Chung-Jui</creator><creator>Teixeira, Paulo José Pereira Lima</creator><creator>Yang, Li</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2552-9635</orcidid><orcidid>https://orcid.org/0000-0001-8434-6532</orcidid><orcidid>https://orcid.org/0000-0002-8906-7070</orcidid><orcidid>https://orcid.org/0000-0002-9282-7704</orcidid><orcidid>https://orcid.org/0000-0002-1493-8871</orcidid><orcidid>https://orcid.org/0000-0003-3665-544X</orcidid></search><sort><creationdate>202303</creationdate><title>Endogenous salicylic acid suppresses de novo root regeneration from leaf explants</title><author>Tran, Sorrel ; Ison, Madalene ; Ferreira Dias, Nathália Cássia ; Ortega, Maria Andrea ; Chen, Yun-Fan Stephanie ; Peper, Alan ; Hu, Lanxi ; Xu, Dawei ; Mozaffari, Khadijeh ; Severns, Paul M ; Yao, Yao ; Tsai, Chung-Jui ; Teixeira, Paulo José Pereira Lima ; Yang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-5a8f4beb7ed4b70e5a1a2e9de4eac828db147d6a6497e3d6fcc793316b9b6bb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Auxin</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Defense industry</topic><topic>Dosage and administration</topic><topic>Environmental aspects</topic><topic>Experiments</topic><topic>Explants</topic><topic>Foliage plants</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Growth</topic><topic>Instrument industry</topic><topic>Leaves</topic><topic>Organogenesis</topic><topic>Pathogens</topic><topic>Phenols</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant hormones</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Roots (Botany)</topic><topic>Salicylic acid</topic><topic>Salicylic Acid - metabolism</topic><topic>Transcription factors</topic><topic>Wounding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Sorrel</creatorcontrib><creatorcontrib>Ison, Madalene</creatorcontrib><creatorcontrib>Ferreira Dias, Nathália Cássia</creatorcontrib><creatorcontrib>Ortega, Maria Andrea</creatorcontrib><creatorcontrib>Chen, Yun-Fan Stephanie</creatorcontrib><creatorcontrib>Peper, Alan</creatorcontrib><creatorcontrib>Hu, Lanxi</creatorcontrib><creatorcontrib>Xu, Dawei</creatorcontrib><creatorcontrib>Mozaffari, Khadijeh</creatorcontrib><creatorcontrib>Severns, Paul M</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Tsai, Chung-Jui</creatorcontrib><creatorcontrib>Teixeira, Paulo José Pereira Lima</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Sorrel</au><au>Ison, Madalene</au><au>Ferreira Dias, Nathália Cássia</au><au>Ortega, Maria Andrea</au><au>Chen, Yun-Fan Stephanie</au><au>Peper, Alan</au><au>Hu, Lanxi</au><au>Xu, Dawei</au><au>Mozaffari, Khadijeh</au><au>Severns, Paul M</au><au>Yao, Yao</au><au>Tsai, Chung-Jui</au><au>Teixeira, Paulo José Pereira Lima</au><au>Yang, Li</au><au>Köhler, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endogenous salicylic acid suppresses de novo root regeneration from leaf explants</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2023-03</date><risdate>2023</risdate><volume>19</volume><issue>3</issue><spage>e1010636</spage><epage>e1010636</epage><pages>e1010636-e1010636</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36857386</pmid><doi>10.1371/journal.pgen.1010636</doi><tpages>e1010636</tpages><orcidid>https://orcid.org/0000-0002-2552-9635</orcidid><orcidid>https://orcid.org/0000-0001-8434-6532</orcidid><orcidid>https://orcid.org/0000-0002-8906-7070</orcidid><orcidid>https://orcid.org/0000-0002-9282-7704</orcidid><orcidid>https://orcid.org/0000-0002-1493-8871</orcidid><orcidid>https://orcid.org/0000-0003-3665-544X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2023-03, Vol.19 (3), p.e1010636-e1010636
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2802053467
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Auxin
Biology and Life Sciences
Biosynthesis
Defense industry
Dosage and administration
Environmental aspects
Experiments
Explants
Foliage plants
Gene Expression Regulation, Plant
Genes
Genetic aspects
Growth
Instrument industry
Leaves
Organogenesis
Pathogens
Phenols
Plant Growth Regulators - metabolism
Plant Growth Regulators - pharmacology
Plant hormones
Plant Leaves - metabolism
Plant Roots - genetics
Plant Roots - metabolism
Research and Analysis Methods
Roots (Botany)
Salicylic acid
Salicylic Acid - metabolism
Transcription factors
Wounding
title Endogenous salicylic acid suppresses de novo root regeneration from leaf explants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endogenous%20salicylic%20acid%20suppresses%20de%20novo%20root%20regeneration%20from%20leaf%20explants&rft.jtitle=PLoS%20genetics&rft.au=Tran,%20Sorrel&rft.date=2023-03&rft.volume=19&rft.issue=3&rft.spage=e1010636&rft.epage=e1010636&rft.pages=e1010636-e1010636&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010636&rft_dat=%3Cgale_plos_%3EA744741152%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802053467&rft_id=info:pmid/36857386&rft_galeid=A744741152&rft_doaj_id=oai_doaj_org_article_512347d0bf17445586d6924b5350841f&rfr_iscdi=true