Long term changes in aquaculture influence migration, regional abundance, and distribution of an avian species

Agricultural development has been causing changes to the environment and the abundance and distribution of avian species. Agriculture is dynamic with changes in products occurring at large scales over relatively short time periods. The catfish aquaculture industry is one such agriculture industry th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-04, Vol.18 (4), p.e0284265-e0284265
Hauptverfasser: Burr, Paul C, Dorr, Brian S, Avery, Jimmy L, Street, Garrett M, Strickland, Bronson K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Agricultural development has been causing changes to the environment and the abundance and distribution of avian species. Agriculture is dynamic with changes in products occurring at large scales over relatively short time periods. The catfish aquaculture industry is one such agriculture industry that has undergone dramatic changes over the last 25 years. The double-crested cormorant (Nannopterum auritum) is a piscivorous bird that has an extensive history with the aquaculture industry of Mississippi due to its depredation of cultured catfish. A large-scale monitoring program began in 1989 to estimate the abundance and location of cormorants at every known roost in the primary catfish producing region of the state, regionally known as the Delta. We used this data set to address hypotheses pertaining to cormorant ecology within the Delta over time, particularly in relation to aquaculture. We found that, although the Midwest breeding population of cormorants has been increasing, the abundance of cormorants wintering in the Delta has been decreasing, closely following the decline of aquaculture, suggesting aquaculture area is the primary reason for cormorant inhabitation of the region. We also modeled cormorant presence and abundance at all roost sites to determine what factors most influenced cormorant distribution. Aquaculture area around roosts was a significant predictor of both cormorant presence and abundance. However, the influence of aquaculture area was seasonally dependent, with greater positive influences occurring prior to migration. Lastly, we found peak cormorant abundance in the Delta is occurring 2.14 days earlier each year, which may be indicative of changes to migration phenology. Information gained using this large dataset aids in cormorant damage mitigation and to further our understanding of cormorant ecology. Data indicate changes in agriculture, and potentially climate change, can influence phenology, distribution, and abundance of avian species at large geographic scales.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0284265