Foci-forming regions of pyruvate kinase and enolase at the molecular surface incorporate proteins into yeast cytoplasmic metabolic enzymes transiently assembling (META) bodies
Spatial reorganization of metabolic enzymes to form the "metabolic enzymes transiently assembling (META) body" is increasingly recognized as a mechanism contributing to regulation of cellular metabolism in response to environmental changes. A number of META body-forming enzymes, including...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-04, Vol.18 (4), p.e0283002-e0283002 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0283002 |
---|---|
container_issue | 4 |
container_start_page | e0283002 |
container_title | PloS one |
container_volume | 18 |
creator | Utsumi, Ryotaro Murata, Yuki Ito-Harashima, Sayoko Akai, Misaki Miura, Natsuko Kuroda, Kouichi Ueda, Mitsuyoshi Kataoka, Michihiko |
description | Spatial reorganization of metabolic enzymes to form the "metabolic enzymes transiently assembling (META) body" is increasingly recognized as a mechanism contributing to regulation of cellular metabolism in response to environmental changes. A number of META body-forming enzymes, including enolase (Eno2p) and phosphofructokinase, have been shown to contain condensate-forming regions. However, whether all META body-forming enzymes have condensate-forming regions or whether enzymes have multiple condensate-forming regions remains unknown. The condensate-forming regions of META body-forming enzymes have potential utility in the creation of artificial intracellular enzyme assemblies. In the present study, the whole sequence of yeast pyruvate kinase (Cdc19p) was searched for condensate-forming regions. Four peptide fragments comprising 27-42 amino acids were found to form condensates. Together with the fragment previously identified from Eno2p, these peptide regions were collectively termed "META body-forming sequences (METAfos)." METAfos-tagged yeast alcohol dehydrogenase (Adh1p) was found to co-localize with META bodies formed by endogenous Cdc19p under hypoxic conditions. The effect of Adh1p co-localization with META bodies on cell metabolism was further evaluated. Expression of Adh1p fused with a METAfos-tag increased production of ethanol compared to acetic acid, indicating that spatial reorganization of metabolic enzymes affects cell metabolism. These results contribute to understanding of the mechanisms and biological roles of META body formation. |
doi_str_mv | 10.1371/journal.pone.0283002 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2800573845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745463294</galeid><doaj_id>oai_doaj_org_article_099d38d5beeb4084b3d1444fdebaef18</doaj_id><sourcerecordid>A745463294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-8a01c8de5f355e9c81258d46ffd7a49a62aa96c213c7923846f151a21b93e45d3</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QGCJSznsEn8km5yqVdVCpSIu5WxN7MnWi2MH26m0_Cn-It7utuqiag4eed57nhm_onhPyznlC_pl7afgwM5H73BesoaXJXtRHNOWs1nNSv7ySX5UvIlxXZYVb-r6dXHEFzmldX1c_L30ysx6HwbjViTgyngXie_JuAnTHSQkv4yDiAScJui8vc8TSbdIBm9RTRYCiVPoQSExTvkw-rDljcEnNFnMuOTJBiEmojbJj1liMIoMmKDzNmfo_mwGjCQFcNGgS3ZDIEYcOrtt6vT7xc3yM-m8NhjfFq96sBHf7c-T4uflxc35t9n1j69X58vrmapakWYNlFQ1GqueVxW2qqGsarSo-14vQLRQM4C2VoxytWgZb3KFVhQY7VqOotL8pPi40x2tj3K_6yhZk5e4yPgqI652CO1hLcdgBggb6cHI-wsfVhJCMsqiLNtW80ZXHWInykZ0XFMhRK-xA-xpk7XO9q9N3YBa5R0EsAeihxVnbuXK30la5uDNtpvTvULwvyeMSQ4mKrQWHPpp13jNWN3WGfrpP-jz4-1RK8gTGNf7_LDaisrlQlSi5qwVGTV_BpVDY_7j7Mze5PsDgtgRVPAxBuwfh6Sl3Pr6oRm59bXc-zrTPjxd0CPpwcj8H5uV-XE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800573845</pqid></control><display><type>article</type><title>Foci-forming regions of pyruvate kinase and enolase at the molecular surface incorporate proteins into yeast cytoplasmic metabolic enzymes transiently assembling (META) bodies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Utsumi, Ryotaro ; Murata, Yuki ; Ito-Harashima, Sayoko ; Akai, Misaki ; Miura, Natsuko ; Kuroda, Kouichi ; Ueda, Mitsuyoshi ; Kataoka, Michihiko</creator><contributor>Lajoie, Patrick</contributor><creatorcontrib>Utsumi, Ryotaro ; Murata, Yuki ; Ito-Harashima, Sayoko ; Akai, Misaki ; Miura, Natsuko ; Kuroda, Kouichi ; Ueda, Mitsuyoshi ; Kataoka, Michihiko ; Lajoie, Patrick</creatorcontrib><description>Spatial reorganization of metabolic enzymes to form the "metabolic enzymes transiently assembling (META) body" is increasingly recognized as a mechanism contributing to regulation of cellular metabolism in response to environmental changes. A number of META body-forming enzymes, including enolase (Eno2p) and phosphofructokinase, have been shown to contain condensate-forming regions. However, whether all META body-forming enzymes have condensate-forming regions or whether enzymes have multiple condensate-forming regions remains unknown. The condensate-forming regions of META body-forming enzymes have potential utility in the creation of artificial intracellular enzyme assemblies. In the present study, the whole sequence of yeast pyruvate kinase (Cdc19p) was searched for condensate-forming regions. Four peptide fragments comprising 27-42 amino acids were found to form condensates. Together with the fragment previously identified from Eno2p, these peptide regions were collectively termed "META body-forming sequences (METAfos)." METAfos-tagged yeast alcohol dehydrogenase (Adh1p) was found to co-localize with META bodies formed by endogenous Cdc19p under hypoxic conditions. The effect of Adh1p co-localization with META bodies on cell metabolism was further evaluated. Expression of Adh1p fused with a METAfos-tag increased production of ethanol compared to acetic acid, indicating that spatial reorganization of metabolic enzymes affects cell metabolism. These results contribute to understanding of the mechanisms and biological roles of META body formation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0283002</identifier><identifier>PMID: 37053166</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetic acid ; Alcohol dehydrogenase ; Amino acids ; Analysis ; Biology and Life Sciences ; Condensates ; E coli ; Electrolysis ; Environmental changes ; Enzymes ; Ethanol ; Evaluation ; Genomes ; Genomics ; Glucose ; Hypoxia ; Kinases ; Localization ; Metabolism ; Phosphofructokinase ; Phosphopyruvate hydratase ; Phosphopyruvate Hydratase - genetics ; Phosphopyruvate Hydratase - metabolism ; Physical Sciences ; Plasmids ; Properties ; Proteins ; Proteins - metabolism ; Pyruvate kinase ; Pyruvate Kinase - genetics ; Pyruvate Kinase - metabolism ; Pyruvic acid ; Research and Analysis Methods ; Saccharomyces cerevisiae - metabolism ; Yeast ; Yeasts</subject><ispartof>PloS one, 2023-04, Vol.18 (4), p.e0283002-e0283002</ispartof><rights>Copyright: © 2023 Utsumi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Utsumi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Utsumi et al 2023 Utsumi et al</rights><rights>2023 Utsumi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-8a01c8de5f355e9c81258d46ffd7a49a62aa96c213c7923846f151a21b93e45d3</citedby><cites>FETCH-LOGICAL-c594t-8a01c8de5f355e9c81258d46ffd7a49a62aa96c213c7923846f151a21b93e45d3</cites><orcidid>0000-0002-8722-0406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101385/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101385/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37053166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lajoie, Patrick</contributor><creatorcontrib>Utsumi, Ryotaro</creatorcontrib><creatorcontrib>Murata, Yuki</creatorcontrib><creatorcontrib>Ito-Harashima, Sayoko</creatorcontrib><creatorcontrib>Akai, Misaki</creatorcontrib><creatorcontrib>Miura, Natsuko</creatorcontrib><creatorcontrib>Kuroda, Kouichi</creatorcontrib><creatorcontrib>Ueda, Mitsuyoshi</creatorcontrib><creatorcontrib>Kataoka, Michihiko</creatorcontrib><title>Foci-forming regions of pyruvate kinase and enolase at the molecular surface incorporate proteins into yeast cytoplasmic metabolic enzymes transiently assembling (META) bodies</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Spatial reorganization of metabolic enzymes to form the "metabolic enzymes transiently assembling (META) body" is increasingly recognized as a mechanism contributing to regulation of cellular metabolism in response to environmental changes. A number of META body-forming enzymes, including enolase (Eno2p) and phosphofructokinase, have been shown to contain condensate-forming regions. However, whether all META body-forming enzymes have condensate-forming regions or whether enzymes have multiple condensate-forming regions remains unknown. The condensate-forming regions of META body-forming enzymes have potential utility in the creation of artificial intracellular enzyme assemblies. In the present study, the whole sequence of yeast pyruvate kinase (Cdc19p) was searched for condensate-forming regions. Four peptide fragments comprising 27-42 amino acids were found to form condensates. Together with the fragment previously identified from Eno2p, these peptide regions were collectively termed "META body-forming sequences (METAfos)." METAfos-tagged yeast alcohol dehydrogenase (Adh1p) was found to co-localize with META bodies formed by endogenous Cdc19p under hypoxic conditions. The effect of Adh1p co-localization with META bodies on cell metabolism was further evaluated. Expression of Adh1p fused with a METAfos-tag increased production of ethanol compared to acetic acid, indicating that spatial reorganization of metabolic enzymes affects cell metabolism. These results contribute to understanding of the mechanisms and biological roles of META body formation.</description><subject>Acetic acid</subject><subject>Alcohol dehydrogenase</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Condensates</subject><subject>E coli</subject><subject>Electrolysis</subject><subject>Environmental changes</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Evaluation</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glucose</subject><subject>Hypoxia</subject><subject>Kinases</subject><subject>Localization</subject><subject>Metabolism</subject><subject>Phosphofructokinase</subject><subject>Phosphopyruvate hydratase</subject><subject>Phosphopyruvate Hydratase - genetics</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Physical Sciences</subject><subject>Plasmids</subject><subject>Properties</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Pyruvate kinase</subject><subject>Pyruvate Kinase - genetics</subject><subject>Pyruvate Kinase - metabolism</subject><subject>Pyruvic acid</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QGCJSznsEn8km5yqVdVCpSIu5WxN7MnWi2MH26m0_Cn-It7utuqiag4eed57nhm_onhPyznlC_pl7afgwM5H73BesoaXJXtRHNOWs1nNSv7ySX5UvIlxXZYVb-r6dXHEFzmldX1c_L30ysx6HwbjViTgyngXie_JuAnTHSQkv4yDiAScJui8vc8TSbdIBm9RTRYCiVPoQSExTvkw-rDljcEnNFnMuOTJBiEmojbJj1liMIoMmKDzNmfo_mwGjCQFcNGgS3ZDIEYcOrtt6vT7xc3yM-m8NhjfFq96sBHf7c-T4uflxc35t9n1j69X58vrmapakWYNlFQ1GqueVxW2qqGsarSo-14vQLRQM4C2VoxytWgZb3KFVhQY7VqOotL8pPi40x2tj3K_6yhZk5e4yPgqI652CO1hLcdgBggb6cHI-wsfVhJCMsqiLNtW80ZXHWInykZ0XFMhRK-xA-xpk7XO9q9N3YBa5R0EsAeihxVnbuXK30la5uDNtpvTvULwvyeMSQ4mKrQWHPpp13jNWN3WGfrpP-jz4-1RK8gTGNf7_LDaisrlQlSi5qwVGTV_BpVDY_7j7Mze5PsDgtgRVPAxBuwfh6Sl3Pr6oRm59bXc-zrTPjxd0CPpwcj8H5uV-XE</recordid><startdate>20230413</startdate><enddate>20230413</enddate><creator>Utsumi, Ryotaro</creator><creator>Murata, Yuki</creator><creator>Ito-Harashima, Sayoko</creator><creator>Akai, Misaki</creator><creator>Miura, Natsuko</creator><creator>Kuroda, Kouichi</creator><creator>Ueda, Mitsuyoshi</creator><creator>Kataoka, Michihiko</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8722-0406</orcidid></search><sort><creationdate>20230413</creationdate><title>Foci-forming regions of pyruvate kinase and enolase at the molecular surface incorporate proteins into yeast cytoplasmic metabolic enzymes transiently assembling (META) bodies</title><author>Utsumi, Ryotaro ; Murata, Yuki ; Ito-Harashima, Sayoko ; Akai, Misaki ; Miura, Natsuko ; Kuroda, Kouichi ; Ueda, Mitsuyoshi ; Kataoka, Michihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-8a01c8de5f355e9c81258d46ffd7a49a62aa96c213c7923846f151a21b93e45d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetic acid</topic><topic>Alcohol dehydrogenase</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Condensates</topic><topic>E coli</topic><topic>Electrolysis</topic><topic>Environmental changes</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Evaluation</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glucose</topic><topic>Hypoxia</topic><topic>Kinases</topic><topic>Localization</topic><topic>Metabolism</topic><topic>Phosphofructokinase</topic><topic>Phosphopyruvate hydratase</topic><topic>Phosphopyruvate Hydratase - genetics</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Physical Sciences</topic><topic>Plasmids</topic><topic>Properties</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Pyruvate kinase</topic><topic>Pyruvate Kinase - genetics</topic><topic>Pyruvate Kinase - metabolism</topic><topic>Pyruvic acid</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utsumi, Ryotaro</creatorcontrib><creatorcontrib>Murata, Yuki</creatorcontrib><creatorcontrib>Ito-Harashima, Sayoko</creatorcontrib><creatorcontrib>Akai, Misaki</creatorcontrib><creatorcontrib>Miura, Natsuko</creatorcontrib><creatorcontrib>Kuroda, Kouichi</creatorcontrib><creatorcontrib>Ueda, Mitsuyoshi</creatorcontrib><creatorcontrib>Kataoka, Michihiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utsumi, Ryotaro</au><au>Murata, Yuki</au><au>Ito-Harashima, Sayoko</au><au>Akai, Misaki</au><au>Miura, Natsuko</au><au>Kuroda, Kouichi</au><au>Ueda, Mitsuyoshi</au><au>Kataoka, Michihiko</au><au>Lajoie, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foci-forming regions of pyruvate kinase and enolase at the molecular surface incorporate proteins into yeast cytoplasmic metabolic enzymes transiently assembling (META) bodies</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-04-13</date><risdate>2023</risdate><volume>18</volume><issue>4</issue><spage>e0283002</spage><epage>e0283002</epage><pages>e0283002-e0283002</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Spatial reorganization of metabolic enzymes to form the "metabolic enzymes transiently assembling (META) body" is increasingly recognized as a mechanism contributing to regulation of cellular metabolism in response to environmental changes. A number of META body-forming enzymes, including enolase (Eno2p) and phosphofructokinase, have been shown to contain condensate-forming regions. However, whether all META body-forming enzymes have condensate-forming regions or whether enzymes have multiple condensate-forming regions remains unknown. The condensate-forming regions of META body-forming enzymes have potential utility in the creation of artificial intracellular enzyme assemblies. In the present study, the whole sequence of yeast pyruvate kinase (Cdc19p) was searched for condensate-forming regions. Four peptide fragments comprising 27-42 amino acids were found to form condensates. Together with the fragment previously identified from Eno2p, these peptide regions were collectively termed "META body-forming sequences (METAfos)." METAfos-tagged yeast alcohol dehydrogenase (Adh1p) was found to co-localize with META bodies formed by endogenous Cdc19p under hypoxic conditions. The effect of Adh1p co-localization with META bodies on cell metabolism was further evaluated. Expression of Adh1p fused with a METAfos-tag increased production of ethanol compared to acetic acid, indicating that spatial reorganization of metabolic enzymes affects cell metabolism. These results contribute to understanding of the mechanisms and biological roles of META body formation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37053166</pmid><doi>10.1371/journal.pone.0283002</doi><orcidid>https://orcid.org/0000-0002-8722-0406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-04, Vol.18 (4), p.e0283002-e0283002 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2800573845 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Acetic acid Alcohol dehydrogenase Amino acids Analysis Biology and Life Sciences Condensates E coli Electrolysis Environmental changes Enzymes Ethanol Evaluation Genomes Genomics Glucose Hypoxia Kinases Localization Metabolism Phosphofructokinase Phosphopyruvate hydratase Phosphopyruvate Hydratase - genetics Phosphopyruvate Hydratase - metabolism Physical Sciences Plasmids Properties Proteins Proteins - metabolism Pyruvate kinase Pyruvate Kinase - genetics Pyruvate Kinase - metabolism Pyruvic acid Research and Analysis Methods Saccharomyces cerevisiae - metabolism Yeast Yeasts |
title | Foci-forming regions of pyruvate kinase and enolase at the molecular surface incorporate proteins into yeast cytoplasmic metabolic enzymes transiently assembling (META) bodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foci-forming%20regions%20of%20pyruvate%20kinase%20and%20enolase%20at%20the%20molecular%20surface%20incorporate%20proteins%20into%20yeast%20cytoplasmic%20metabolic%20enzymes%20transiently%20assembling%20(META)%20bodies&rft.jtitle=PloS%20one&rft.au=Utsumi,%20Ryotaro&rft.date=2023-04-13&rft.volume=18&rft.issue=4&rft.spage=e0283002&rft.epage=e0283002&rft.pages=e0283002-e0283002&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0283002&rft_dat=%3Cgale_plos_%3EA745463294%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800573845&rft_id=info:pmid/37053166&rft_galeid=A745463294&rft_doaj_id=oai_doaj_org_article_099d38d5beeb4084b3d1444fdebaef18&rfr_iscdi=true |