Hazard source detection of longitudinal tearing of conveyor belt based on deep learning
Belt tearing is the main safety accident of belt conveyor. The main cause of tearing is the doped bolt and steel in the conveying belt. In this paper, the bolt and steel are identified as the Hazard source of tear. In this paper, bolt and steel are defined as the risk sources of tearing. Effective d...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-04, Vol.18 (4), p.e0283878-e0283878 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0283878 |
---|---|
container_issue | 4 |
container_start_page | e0283878 |
container_title | PloS one |
container_volume | 18 |
creator | Wang, Yimin Miao, Changyun Miao, Di Yang, Dengjie Zheng, Yao |
description | Belt tearing is the main safety accident of belt conveyor. The main cause of tearing is the doped bolt and steel in the conveying belt. In this paper, the bolt and steel are identified as the Hazard source of tear. In this paper, bolt and steel are defined as the risk sources of tearing. Effective detection of the source of danger can effectively prevent the occurrence of conveyor belt tearing accidents. Here we use deep learning to detect the hazard source image. We improved on the SSD(Single Shot MultiBox Detector) model. Replace the original backbone network with an improved Shufflenet_V2, and replace the original position loss function with the CIoU loss function. Additionally, it compares this new approach to previous methods. The proposed model has surpassed other state-of-art methods with more than 94% accuracy. In addition, when deployed without GPU acceleration, the detection speed can reach 20fps. It can meet the requirements of real-time detection. The experimental results show that the proposed model can realize the online detection of hazard sources, so as to prevent longitudinal tearing of conveyor belt. |
doi_str_mv | 10.1371/journal.pone.0283878 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2796895877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744511720</galeid><doaj_id>oai_doaj_org_article_0645e9665e50461c902a5248308b3189</doaj_id><sourcerecordid>A744511720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693t-f12c1a8ffd9e0787f831e9796eda9ca9370d566c1fe085df492db6f54b1371dd3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEomXhHyCIhITgsIsdJ7F9QlUFdKVKlfg8Wo49zrryxtvYqSi_HqebVhvUA_Ih1uR537Fnxln2EqMVJhR_uPRD30m32vkOVqhghFH2KDvGnBTLukDk8cH-KHsWwiVCFWF1_TQ7IhQVBJX0OPt1Jv_IXuchuSnINURQ0fou9yZ3vmttHLRNafIIsrddO8aV767hxvd5Ay7mjQyg86TQALvcJaxL3PPsiZEuwIvpu8h-fP70_fRseX7xZX16cr5UNSdxaXChsGTGaA6IMmoYwcApr0FLriRPB9VVXStsALFKm5IXuqlNVTZjDbQmi-z13nfnfBBTTYIokgXjFaM0Ees9ob28FLvebmV_I7y04jbg-1bIPlrlQKC6rIDXdQUVKmusOCpkVZSMINYQzHjy-jhlG5otaAVd7KWbmc7_dHYjWn8tMEKUI0ySw7vJofdXA4QotjYocE524Ifbg1Nc8tS4hL75B334ehPVynQD2xmfEqvRVJzQsqwwpmkAFtnqASotDVub-gnGpvhM8H4mSEyE37GVQwhi_e3r_7MXP-fs2wN2A9LFTfBuGGcuzMFyD6reh9CDua8yRmJs_l01xPgAxPQAkuzVYYfuRXcTT_4Cuzr_IA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2796895877</pqid></control><display><type>article</type><title>Hazard source detection of longitudinal tearing of conveyor belt based on deep learning</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Yimin ; Miao, Changyun ; Miao, Di ; Yang, Dengjie ; Zheng, Yao</creator><contributor>Ijaz, Muhammad Fazal</contributor><creatorcontrib>Wang, Yimin ; Miao, Changyun ; Miao, Di ; Yang, Dengjie ; Zheng, Yao ; Ijaz, Muhammad Fazal</creatorcontrib><description>Belt tearing is the main safety accident of belt conveyor. The main cause of tearing is the doped bolt and steel in the conveying belt. In this paper, the bolt and steel are identified as the Hazard source of tear. In this paper, bolt and steel are defined as the risk sources of tearing. Effective detection of the source of danger can effectively prevent the occurrence of conveyor belt tearing accidents. Here we use deep learning to detect the hazard source image. We improved on the SSD(Single Shot MultiBox Detector) model. Replace the original backbone network with an improved Shufflenet_V2, and replace the original position loss function with the CIoU loss function. Additionally, it compares this new approach to previous methods. The proposed model has surpassed other state-of-art methods with more than 94% accuracy. In addition, when deployed without GPU acceleration, the detection speed can reach 20fps. It can meet the requirements of real-time detection. The experimental results show that the proposed model can realize the online detection of hazard sources, so as to prevent longitudinal tearing of conveyor belt.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0283878</identifier><identifier>PMID: 37023047</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acceleration ; Accidents ; Accuracy ; Algorithms ; Belt conveyors ; Biology and Life Sciences ; Cameras ; Coal ; Computer and Information Sciences ; Computer networks ; Conveying machinery ; Deep Learning ; Detectors ; Diabetic retinopathy ; Engineering and Technology ; Humans ; Lacrimal Apparatus Diseases ; Management ; Medicine and Health Sciences ; Metal detectors ; Methods ; Mineral industry ; Mining industry ; Neural networks ; Occupational health and safety ; Physical Sciences ; Research and Analysis Methods ; Safety and security measures ; Seat belts ; Steel ; Tearing ; Telecommunication systems ; Vision systems</subject><ispartof>PloS one, 2023-04, Vol.18 (4), p.e0283878-e0283878</ispartof><rights>Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Wang et al 2023 Wang et al</rights><rights>2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c693t-f12c1a8ffd9e0787f831e9796eda9ca9370d566c1fe085df492db6f54b1371dd3</citedby><cites>FETCH-LOGICAL-c693t-f12c1a8ffd9e0787f831e9796eda9ca9370d566c1fe085df492db6f54b1371dd3</cites><orcidid>0000-0003-4455-9212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079013/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079013/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37023047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ijaz, Muhammad Fazal</contributor><creatorcontrib>Wang, Yimin</creatorcontrib><creatorcontrib>Miao, Changyun</creatorcontrib><creatorcontrib>Miao, Di</creatorcontrib><creatorcontrib>Yang, Dengjie</creatorcontrib><creatorcontrib>Zheng, Yao</creatorcontrib><title>Hazard source detection of longitudinal tearing of conveyor belt based on deep learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Belt tearing is the main safety accident of belt conveyor. The main cause of tearing is the doped bolt and steel in the conveying belt. In this paper, the bolt and steel are identified as the Hazard source of tear. In this paper, bolt and steel are defined as the risk sources of tearing. Effective detection of the source of danger can effectively prevent the occurrence of conveyor belt tearing accidents. Here we use deep learning to detect the hazard source image. We improved on the SSD(Single Shot MultiBox Detector) model. Replace the original backbone network with an improved Shufflenet_V2, and replace the original position loss function with the CIoU loss function. Additionally, it compares this new approach to previous methods. The proposed model has surpassed other state-of-art methods with more than 94% accuracy. In addition, when deployed without GPU acceleration, the detection speed can reach 20fps. It can meet the requirements of real-time detection. The experimental results show that the proposed model can realize the online detection of hazard sources, so as to prevent longitudinal tearing of conveyor belt.</description><subject>Acceleration</subject><subject>Accidents</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Belt conveyors</subject><subject>Biology and Life Sciences</subject><subject>Cameras</subject><subject>Coal</subject><subject>Computer and Information Sciences</subject><subject>Computer networks</subject><subject>Conveying machinery</subject><subject>Deep Learning</subject><subject>Detectors</subject><subject>Diabetic retinopathy</subject><subject>Engineering and Technology</subject><subject>Humans</subject><subject>Lacrimal Apparatus Diseases</subject><subject>Management</subject><subject>Medicine and Health Sciences</subject><subject>Metal detectors</subject><subject>Methods</subject><subject>Mineral industry</subject><subject>Mining industry</subject><subject>Neural networks</subject><subject>Occupational health and safety</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Safety and security measures</subject><subject>Seat belts</subject><subject>Steel</subject><subject>Tearing</subject><subject>Telecommunication systems</subject><subject>Vision systems</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEomXhHyCIhITgsIsdJ7F9QlUFdKVKlfg8Wo49zrryxtvYqSi_HqebVhvUA_Ih1uR537Fnxln2EqMVJhR_uPRD30m32vkOVqhghFH2KDvGnBTLukDk8cH-KHsWwiVCFWF1_TQ7IhQVBJX0OPt1Jv_IXuchuSnINURQ0fou9yZ3vmttHLRNafIIsrddO8aV767hxvd5Ay7mjQyg86TQALvcJaxL3PPsiZEuwIvpu8h-fP70_fRseX7xZX16cr5UNSdxaXChsGTGaA6IMmoYwcApr0FLriRPB9VVXStsALFKm5IXuqlNVTZjDbQmi-z13nfnfBBTTYIokgXjFaM0Ees9ob28FLvebmV_I7y04jbg-1bIPlrlQKC6rIDXdQUVKmusOCpkVZSMINYQzHjy-jhlG5otaAVd7KWbmc7_dHYjWn8tMEKUI0ySw7vJofdXA4QotjYocE524Ifbg1Nc8tS4hL75B334ehPVynQD2xmfEqvRVJzQsqwwpmkAFtnqASotDVub-gnGpvhM8H4mSEyE37GVQwhi_e3r_7MXP-fs2wN2A9LFTfBuGGcuzMFyD6reh9CDua8yRmJs_l01xPgAxPQAkuzVYYfuRXcTT_4Cuzr_IA</recordid><startdate>20230406</startdate><enddate>20230406</enddate><creator>Wang, Yimin</creator><creator>Miao, Changyun</creator><creator>Miao, Di</creator><creator>Yang, Dengjie</creator><creator>Zheng, Yao</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4455-9212</orcidid></search><sort><creationdate>20230406</creationdate><title>Hazard source detection of longitudinal tearing of conveyor belt based on deep learning</title><author>Wang, Yimin ; Miao, Changyun ; Miao, Di ; Yang, Dengjie ; Zheng, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693t-f12c1a8ffd9e0787f831e9796eda9ca9370d566c1fe085df492db6f54b1371dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration</topic><topic>Accidents</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Belt conveyors</topic><topic>Biology and Life Sciences</topic><topic>Cameras</topic><topic>Coal</topic><topic>Computer and Information Sciences</topic><topic>Computer networks</topic><topic>Conveying machinery</topic><topic>Deep Learning</topic><topic>Detectors</topic><topic>Diabetic retinopathy</topic><topic>Engineering and Technology</topic><topic>Humans</topic><topic>Lacrimal Apparatus Diseases</topic><topic>Management</topic><topic>Medicine and Health Sciences</topic><topic>Metal detectors</topic><topic>Methods</topic><topic>Mineral industry</topic><topic>Mining industry</topic><topic>Neural networks</topic><topic>Occupational health and safety</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Safety and security measures</topic><topic>Seat belts</topic><topic>Steel</topic><topic>Tearing</topic><topic>Telecommunication systems</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yimin</creatorcontrib><creatorcontrib>Miao, Changyun</creatorcontrib><creatorcontrib>Miao, Di</creatorcontrib><creatorcontrib>Yang, Dengjie</creatorcontrib><creatorcontrib>Zheng, Yao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yimin</au><au>Miao, Changyun</au><au>Miao, Di</au><au>Yang, Dengjie</au><au>Zheng, Yao</au><au>Ijaz, Muhammad Fazal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hazard source detection of longitudinal tearing of conveyor belt based on deep learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-04-06</date><risdate>2023</risdate><volume>18</volume><issue>4</issue><spage>e0283878</spage><epage>e0283878</epage><pages>e0283878-e0283878</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Belt tearing is the main safety accident of belt conveyor. The main cause of tearing is the doped bolt and steel in the conveying belt. In this paper, the bolt and steel are identified as the Hazard source of tear. In this paper, bolt and steel are defined as the risk sources of tearing. Effective detection of the source of danger can effectively prevent the occurrence of conveyor belt tearing accidents. Here we use deep learning to detect the hazard source image. We improved on the SSD(Single Shot MultiBox Detector) model. Replace the original backbone network with an improved Shufflenet_V2, and replace the original position loss function with the CIoU loss function. Additionally, it compares this new approach to previous methods. The proposed model has surpassed other state-of-art methods with more than 94% accuracy. In addition, when deployed without GPU acceleration, the detection speed can reach 20fps. It can meet the requirements of real-time detection. The experimental results show that the proposed model can realize the online detection of hazard sources, so as to prevent longitudinal tearing of conveyor belt.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37023047</pmid><doi>10.1371/journal.pone.0283878</doi><tpages>e0283878</tpages><orcidid>https://orcid.org/0000-0003-4455-9212</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-04, Vol.18 (4), p.e0283878-e0283878 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2796895877 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acceleration Accidents Accuracy Algorithms Belt conveyors Biology and Life Sciences Cameras Coal Computer and Information Sciences Computer networks Conveying machinery Deep Learning Detectors Diabetic retinopathy Engineering and Technology Humans Lacrimal Apparatus Diseases Management Medicine and Health Sciences Metal detectors Methods Mineral industry Mining industry Neural networks Occupational health and safety Physical Sciences Research and Analysis Methods Safety and security measures Seat belts Steel Tearing Telecommunication systems Vision systems |
title | Hazard source detection of longitudinal tearing of conveyor belt based on deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hazard%20source%20detection%20of%20longitudinal%20tearing%20of%20conveyor%20belt%20based%20on%20deep%20learning&rft.jtitle=PloS%20one&rft.au=Wang,%20Yimin&rft.date=2023-04-06&rft.volume=18&rft.issue=4&rft.spage=e0283878&rft.epage=e0283878&rft.pages=e0283878-e0283878&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0283878&rft_dat=%3Cgale_plos_%3EA744511720%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2796895877&rft_id=info:pmid/37023047&rft_galeid=A744511720&rft_doaj_id=oai_doaj_org_article_0645e9665e50461c902a5248308b3189&rfr_iscdi=true |