Generalized statistics: Applications to data inverse problems with outlier-resistance

The conventional approach to data-driven inversion framework is based on Gaussian statistics that presents serious difficulties, especially in the presence of outliers in the measurements. In this work, we present maximum likelihood estimators associated with generalized Gaussian distributions in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-03, Vol.18 (3), p.e0282578-e0282578
Hauptverfasser: Dos Santos Lima, Gustavo Z, de Lima, João V T, de Araújo, João M, Corso, Gilberto, da Silva, Sérgio Luiz E F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0282578
container_issue 3
container_start_page e0282578
container_title PloS one
container_volume 18
creator Dos Santos Lima, Gustavo Z
de Lima, João V T
de Araújo, João M
Corso, Gilberto
da Silva, Sérgio Luiz E F
description The conventional approach to data-driven inversion framework is based on Gaussian statistics that presents serious difficulties, especially in the presence of outliers in the measurements. In this work, we present maximum likelihood estimators associated with generalized Gaussian distributions in the context of Rényi, Tsallis and Kaniadakis statistics. In this regard, we analytically analyze the outlier-resistance of each proposal through the so-called influence function. In this way, we formulate inverse problems by constructing objective functions linked to the maximum likelihood estimators. To demonstrate the robustness of the generalized methodologies, we consider an important geophysical inverse problem with high noisy data with spikes. The results reveal that the best data inversion performance occurs when the entropic index from each generalized statistic is associated with objective functions proportional to the inverse of the error amplitude. We argue that in such a limit the three approaches are resistant to outliers and are also equivalent, which suggests a lower computational cost for the inversion process due to the reduction of numerical simulations to be performed and the fast convergence of the optimization process.
doi_str_mv 10.1371/journal.pone.0282578
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2792881736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743645978</galeid><doaj_id>oai_doaj_org_article_d709c2b6ecfa4eada46e467c67741eca</doaj_id><sourcerecordid>A743645978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693t-55952876dfae08e00c7e9438806843451587b24363ae099c8d57578f7d81f3ea3</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYqPwDxBEQkJwkeLEjj-4QdUEo9KkScC4tVznpHXlxsF2xsevx12zqUG7QLlwYj_vOTmv3yx7XqJ5iVn5busG3yk7710Hc1Txqmb8QXZaClwVtEL44dH7SfYkhC1CNeaUPs5OMBWCIopOs6tz6MAra_5Ak4eoognR6PA-X_S9NTp9uy7k0eWNiio33TX4AHnv3crCLuQ_TdzkbojWgC88hKRWnYan2aNW2QDPxnWWXX36-O3sc3Fxeb48W1wUmgoci7oWdcUZbVoFiANCmoEgmHNEOcGkLmvOVhXBFKdzITRvapambFnDyxaDwrPs5aFub12QoyNBVkxUnJcsCWfZ8kA0Tm1l781O-d_SKSNvNpxfS-XTxBZkw5DQ1YqCbhUB1ShCgVCmKWOkBL3v9mHsNqx20GjoYnJuUnR60pmNXLtrWSJEq5ryVOHNWMG7HwOEKHcmaLBWdeCGw48LlFwhCX31D3r_eCO1VmkC07UuNdb7onLBknGkFmzfdn4PlZ4Gdkan_LQm7U8EbyeCxET4FddqCEEuv375f_by-5R9fcRuQNm4Cc4ONymbguQAau9C8NDeuVwiuY__rRtyH385xj_JXhzf0J3oNu_4L-ZRACI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792881736</pqid></control><display><type>article</type><title>Generalized statistics: Applications to data inverse problems with outlier-resistance</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Dos Santos Lima, Gustavo Z ; de Lima, João V T ; de Araújo, João M ; Corso, Gilberto ; da Silva, Sérgio Luiz E F</creator><creatorcontrib>Dos Santos Lima, Gustavo Z ; de Lima, João V T ; de Araújo, João M ; Corso, Gilberto ; da Silva, Sérgio Luiz E F</creatorcontrib><description>The conventional approach to data-driven inversion framework is based on Gaussian statistics that presents serious difficulties, especially in the presence of outliers in the measurements. In this work, we present maximum likelihood estimators associated with generalized Gaussian distributions in the context of Rényi, Tsallis and Kaniadakis statistics. In this regard, we analytically analyze the outlier-resistance of each proposal through the so-called influence function. In this way, we formulate inverse problems by constructing objective functions linked to the maximum likelihood estimators. To demonstrate the robustness of the generalized methodologies, we consider an important geophysical inverse problem with high noisy data with spikes. The results reveal that the best data inversion performance occurs when the entropic index from each generalized statistic is associated with objective functions proportional to the inverse of the error amplitude. We argue that in such a limit the three approaches are resistant to outliers and are also equivalent, which suggests a lower computational cost for the inversion process due to the reduction of numerical simulations to be performed and the fast convergence of the optimization process.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0282578</identifier><identifier>PMID: 36996060</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Computer applications ; Data analysis ; Earth Sciences ; Engineering and Technology ; Entropy ; Estimates ; Evaluation ; Gaussian distribution ; Influence functions ; Inverse problems ; Inversion ; Likelihood Functions ; Machine learning ; Maximum likelihood estimators ; Maximum likelihood method ; Normal Distribution ; Numerical simulations ; Optimization ; Outliers (statistics) ; Physical Sciences ; Probability distribution ; Robustness (mathematics) ; Statistical mechanics ; Statistics</subject><ispartof>PloS one, 2023-03, Vol.18 (3), p.e0282578-e0282578</ispartof><rights>Copyright: © 2023 dos Santos Lima et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 dos Santos Lima et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 dos Santos Lima et al 2023 dos Santos Lima et al</rights><rights>2023 dos Santos Lima et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c693t-55952876dfae08e00c7e9438806843451587b24363ae099c8d57578f7d81f3ea3</citedby><cites>FETCH-LOGICAL-c693t-55952876dfae08e00c7e9438806843451587b24363ae099c8d57578f7d81f3ea3</cites><orcidid>0000-0002-4462-0522 ; 0000-0002-6384-5049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062568/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062568/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36996060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dos Santos Lima, Gustavo Z</creatorcontrib><creatorcontrib>de Lima, João V T</creatorcontrib><creatorcontrib>de Araújo, João M</creatorcontrib><creatorcontrib>Corso, Gilberto</creatorcontrib><creatorcontrib>da Silva, Sérgio Luiz E F</creatorcontrib><title>Generalized statistics: Applications to data inverse problems with outlier-resistance</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The conventional approach to data-driven inversion framework is based on Gaussian statistics that presents serious difficulties, especially in the presence of outliers in the measurements. In this work, we present maximum likelihood estimators associated with generalized Gaussian distributions in the context of Rényi, Tsallis and Kaniadakis statistics. In this regard, we analytically analyze the outlier-resistance of each proposal through the so-called influence function. In this way, we formulate inverse problems by constructing objective functions linked to the maximum likelihood estimators. To demonstrate the robustness of the generalized methodologies, we consider an important geophysical inverse problem with high noisy data with spikes. The results reveal that the best data inversion performance occurs when the entropic index from each generalized statistic is associated with objective functions proportional to the inverse of the error amplitude. We argue that in such a limit the three approaches are resistant to outliers and are also equivalent, which suggests a lower computational cost for the inversion process due to the reduction of numerical simulations to be performed and the fast convergence of the optimization process.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Computer applications</subject><subject>Data analysis</subject><subject>Earth Sciences</subject><subject>Engineering and Technology</subject><subject>Entropy</subject><subject>Estimates</subject><subject>Evaluation</subject><subject>Gaussian distribution</subject><subject>Influence functions</subject><subject>Inverse problems</subject><subject>Inversion</subject><subject>Likelihood Functions</subject><subject>Machine learning</subject><subject>Maximum likelihood estimators</subject><subject>Maximum likelihood method</subject><subject>Normal Distribution</subject><subject>Numerical simulations</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Physical Sciences</subject><subject>Probability distribution</subject><subject>Robustness (mathematics)</subject><subject>Statistical mechanics</subject><subject>Statistics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYqPwDxBEQkJwkeLEjj-4QdUEo9KkScC4tVznpHXlxsF2xsevx12zqUG7QLlwYj_vOTmv3yx7XqJ5iVn5busG3yk7710Hc1Txqmb8QXZaClwVtEL44dH7SfYkhC1CNeaUPs5OMBWCIopOs6tz6MAra_5Ak4eoognR6PA-X_S9NTp9uy7k0eWNiio33TX4AHnv3crCLuQ_TdzkbojWgC88hKRWnYan2aNW2QDPxnWWXX36-O3sc3Fxeb48W1wUmgoci7oWdcUZbVoFiANCmoEgmHNEOcGkLmvOVhXBFKdzITRvapambFnDyxaDwrPs5aFub12QoyNBVkxUnJcsCWfZ8kA0Tm1l781O-d_SKSNvNpxfS-XTxBZkw5DQ1YqCbhUB1ShCgVCmKWOkBL3v9mHsNqx20GjoYnJuUnR60pmNXLtrWSJEq5ryVOHNWMG7HwOEKHcmaLBWdeCGw48LlFwhCX31D3r_eCO1VmkC07UuNdb7onLBknGkFmzfdn4PlZ4Gdkan_LQm7U8EbyeCxET4FddqCEEuv375f_by-5R9fcRuQNm4Cc4ONymbguQAau9C8NDeuVwiuY__rRtyH385xj_JXhzf0J3oNu_4L-ZRACI</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>Dos Santos Lima, Gustavo Z</creator><creator>de Lima, João V T</creator><creator>de Araújo, João M</creator><creator>Corso, Gilberto</creator><creator>da Silva, Sérgio Luiz E F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4462-0522</orcidid><orcidid>https://orcid.org/0000-0002-6384-5049</orcidid></search><sort><creationdate>20230330</creationdate><title>Generalized statistics: Applications to data inverse problems with outlier-resistance</title><author>Dos Santos Lima, Gustavo Z ; de Lima, João V T ; de Araújo, João M ; Corso, Gilberto ; da Silva, Sérgio Luiz E F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693t-55952876dfae08e00c7e9438806843451587b24363ae099c8d57578f7d81f3ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Computer applications</topic><topic>Data analysis</topic><topic>Earth Sciences</topic><topic>Engineering and Technology</topic><topic>Entropy</topic><topic>Estimates</topic><topic>Evaluation</topic><topic>Gaussian distribution</topic><topic>Influence functions</topic><topic>Inverse problems</topic><topic>Inversion</topic><topic>Likelihood Functions</topic><topic>Machine learning</topic><topic>Maximum likelihood estimators</topic><topic>Maximum likelihood method</topic><topic>Normal Distribution</topic><topic>Numerical simulations</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Physical Sciences</topic><topic>Probability distribution</topic><topic>Robustness (mathematics)</topic><topic>Statistical mechanics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dos Santos Lima, Gustavo Z</creatorcontrib><creatorcontrib>de Lima, João V T</creatorcontrib><creatorcontrib>de Araújo, João M</creatorcontrib><creatorcontrib>Corso, Gilberto</creatorcontrib><creatorcontrib>da Silva, Sérgio Luiz E F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dos Santos Lima, Gustavo Z</au><au>de Lima, João V T</au><au>de Araújo, João M</au><au>Corso, Gilberto</au><au>da Silva, Sérgio Luiz E F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized statistics: Applications to data inverse problems with outlier-resistance</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-03-30</date><risdate>2023</risdate><volume>18</volume><issue>3</issue><spage>e0282578</spage><epage>e0282578</epage><pages>e0282578-e0282578</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The conventional approach to data-driven inversion framework is based on Gaussian statistics that presents serious difficulties, especially in the presence of outliers in the measurements. In this work, we present maximum likelihood estimators associated with generalized Gaussian distributions in the context of Rényi, Tsallis and Kaniadakis statistics. In this regard, we analytically analyze the outlier-resistance of each proposal through the so-called influence function. In this way, we formulate inverse problems by constructing objective functions linked to the maximum likelihood estimators. To demonstrate the robustness of the generalized methodologies, we consider an important geophysical inverse problem with high noisy data with spikes. The results reveal that the best data inversion performance occurs when the entropic index from each generalized statistic is associated with objective functions proportional to the inverse of the error amplitude. We argue that in such a limit the three approaches are resistant to outliers and are also equivalent, which suggests a lower computational cost for the inversion process due to the reduction of numerical simulations to be performed and the fast convergence of the optimization process.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36996060</pmid><doi>10.1371/journal.pone.0282578</doi><tpages>e0282578</tpages><orcidid>https://orcid.org/0000-0002-4462-0522</orcidid><orcidid>https://orcid.org/0000-0002-6384-5049</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-03, Vol.18 (3), p.e0282578-e0282578
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2792881736
source Public Library of Science (PLoS) Journals Open Access; Open Access: PubMed Central; MEDLINE; Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Algorithms
Analysis
Computer applications
Data analysis
Earth Sciences
Engineering and Technology
Entropy
Estimates
Evaluation
Gaussian distribution
Influence functions
Inverse problems
Inversion
Likelihood Functions
Machine learning
Maximum likelihood estimators
Maximum likelihood method
Normal Distribution
Numerical simulations
Optimization
Outliers (statistics)
Physical Sciences
Probability distribution
Robustness (mathematics)
Statistical mechanics
Statistics
title Generalized statistics: Applications to data inverse problems with outlier-resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20statistics:%20Applications%20to%20data%20inverse%20problems%20with%20outlier-resistance&rft.jtitle=PloS%20one&rft.au=Dos%20Santos%20Lima,%20Gustavo%20Z&rft.date=2023-03-30&rft.volume=18&rft.issue=3&rft.spage=e0282578&rft.epage=e0282578&rft.pages=e0282578-e0282578&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0282578&rft_dat=%3Cgale_plos_%3EA743645978%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792881736&rft_id=info:pmid/36996060&rft_galeid=A743645978&rft_doaj_id=oai_doaj_org_article_d709c2b6ecfa4eada46e467c67741eca&rfr_iscdi=true