Identification of predicate creep under the 510(k) process: A case study of a robotic surgical device
The FDA's 510(k) process for medical devices is based on "substantial equivalence" to devices clearedpre-1976 or legally marketed thereafter, known as predicate devices. In the last decade, several high-profile device recalls have drawn attention to this regulatory clearance process a...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-03, Vol.18 (3), p.e0283442-e0283442 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0283442 |
---|---|
container_issue | 3 |
container_start_page | e0283442 |
container_title | PloS one |
container_volume | 18 |
creator | Lefkovich, Charlotte Rothenberg, Sandra |
description | The FDA's 510(k) process for medical devices is based on "substantial equivalence" to devices clearedpre-1976 or legally marketed thereafter, known as predicate devices. In the last decade, several high-profile device recalls have drawn attention to this regulatory clearance process and researchers have raised questions about the validity of the 510(k) process as a broad clearance mechanism. One of the issues raised is the risk of predicate creep, a cycle of technology change through repeated clearance of devices based on predicates with slightly different technological characteristics, such as materials and power sources, or have indications for different anatomical sites. This paper proposes a new way to identify potential "predicate creep" through the use of product codes and regulatory classifications. We test this method by applying it to a case study of a Robotic Assisted Surgery (RAS) device, the Intuitive Surgical Da Vinci Si Surgical System. We find that there is evidence of predicate creep using our method, and discuss implications of this method for research and policy. |
doi_str_mv | 10.1371/journal.pone.0283442 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2791940504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743358863</galeid><doaj_id>oai_doaj_org_article_2a4651fe814a471ba33720f838fce4b5</doaj_id><sourcerecordid>A743358863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-fa8054f459e0657b7514d8bdd84354bcdcc0f9b88b2cc02362a0b2d61d2cd37f3</originalsourceid><addsrcrecordid>eNptUstuEzEUHSEQLYE_QGCJTVkk-D0eNiiqeESqxAbWlse-Th0m42DPVOrf42mmVYMqL_w659x7rk5VvSV4RVhNPu3imHrTrQ6xhxWminFOn1XnpGF0KSlmzx-dz6pXOe8wFkxJ-bI6Y7KppaL4vIKNg34IPlgzhNij6NEhgZuugGwCOKCxd5DQcA1IEHzx52MBRAs5f0ZrZE0GlIfR3U5Mg1Js4xAsymPaFo0OObgJFl5XL7zpMryZ90X1-9vXX5c_llc_v28u11dLKxo-LL1RWHDPRQNYirqtBeFOtc4pzgRvrbMW-6ZVqqXlRJmkBrfUSeKodaz2bFG9P-oeupj1PKGsad2QhmOBeUFsjggXzU4fUtibdKujCfruIaatNqk46EBTw6UgHhThhtekNYzVFHvFlLfAW1G0vszVxnYPzpZBJtOdiJ7-9OFab-ONJhjzWhQDi-piVkjx7wh50PuQLXSd6SGOd41T3igppmIf_oM-bW9GbU1xEHofS2E7iep1zRkTSklWUKsnUGU52Adb8uRDeT8h8CPBpphzAv9gkmA9pfG-GT2lUc9pLLR3jwf0QLqPH_sH9DDbQw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791940504</pqid></control><display><type>article</type><title>Identification of predicate creep under the 510(k) process: A case study of a robotic surgical device</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Lefkovich, Charlotte ; Rothenberg, Sandra</creator><contributor>Wang, Quanzeng</contributor><creatorcontrib>Lefkovich, Charlotte ; Rothenberg, Sandra ; Wang, Quanzeng</creatorcontrib><description>The FDA's 510(k) process for medical devices is based on "substantial equivalence" to devices clearedpre-1976 or legally marketed thereafter, known as predicate devices. In the last decade, several high-profile device recalls have drawn attention to this regulatory clearance process and researchers have raised questions about the validity of the 510(k) process as a broad clearance mechanism. One of the issues raised is the risk of predicate creep, a cycle of technology change through repeated clearance of devices based on predicates with slightly different technological characteristics, such as materials and power sources, or have indications for different anatomical sites. This paper proposes a new way to identify potential "predicate creep" through the use of product codes and regulatory classifications. We test this method by applying it to a case study of a Robotic Assisted Surgery (RAS) device, the Intuitive Surgical Da Vinci Si Surgical System. We find that there is evidence of predicate creep using our method, and discuss implications of this method for research and policy.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0283442</identifier><identifier>PMID: 36976820</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Case reports ; Case studies ; Complications and side effects ; Device Approval ; Engineering and Technology ; FDA approval ; Health care industry ; Health risks ; Kinetics ; Literature reviews ; Medical devices ; Medical equipment ; Medical technology ; Medicine and Health Sciences ; Patient outcomes ; Policy ; Power sources ; Robotic surgery ; Robotic Surgical Procedures ; Robotics ; Science Policy ; Technology application ; Transplants & implants ; United States ; United States Food and Drug Administration</subject><ispartof>PloS one, 2023-03, Vol.18 (3), p.e0283442-e0283442</ispartof><rights>Copyright: © 2023 Lefkovich, Rothenberg. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Lefkovich, Rothenberg. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Lefkovich, Rothenberg 2023 Lefkovich, Rothenberg</rights><rights>2023 Lefkovich, Rothenberg. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-fa8054f459e0657b7514d8bdd84354bcdcc0f9b88b2cc02362a0b2d61d2cd37f3</citedby><cites>FETCH-LOGICAL-c594t-fa8054f459e0657b7514d8bdd84354bcdcc0f9b88b2cc02362a0b2d61d2cd37f3</cites><orcidid>0000-0002-0218-3248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047502/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047502/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36976820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Quanzeng</contributor><creatorcontrib>Lefkovich, Charlotte</creatorcontrib><creatorcontrib>Rothenberg, Sandra</creatorcontrib><title>Identification of predicate creep under the 510(k) process: A case study of a robotic surgical device</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The FDA's 510(k) process for medical devices is based on "substantial equivalence" to devices clearedpre-1976 or legally marketed thereafter, known as predicate devices. In the last decade, several high-profile device recalls have drawn attention to this regulatory clearance process and researchers have raised questions about the validity of the 510(k) process as a broad clearance mechanism. One of the issues raised is the risk of predicate creep, a cycle of technology change through repeated clearance of devices based on predicates with slightly different technological characteristics, such as materials and power sources, or have indications for different anatomical sites. This paper proposes a new way to identify potential "predicate creep" through the use of product codes and regulatory classifications. We test this method by applying it to a case study of a Robotic Assisted Surgery (RAS) device, the Intuitive Surgical Da Vinci Si Surgical System. We find that there is evidence of predicate creep using our method, and discuss implications of this method for research and policy.</description><subject>Biology and Life Sciences</subject><subject>Case reports</subject><subject>Case studies</subject><subject>Complications and side effects</subject><subject>Device Approval</subject><subject>Engineering and Technology</subject><subject>FDA approval</subject><subject>Health care industry</subject><subject>Health risks</subject><subject>Kinetics</subject><subject>Literature reviews</subject><subject>Medical devices</subject><subject>Medical equipment</subject><subject>Medical technology</subject><subject>Medicine and Health Sciences</subject><subject>Patient outcomes</subject><subject>Policy</subject><subject>Power sources</subject><subject>Robotic surgery</subject><subject>Robotic Surgical Procedures</subject><subject>Robotics</subject><subject>Science Policy</subject><subject>Technology application</subject><subject>Transplants & implants</subject><subject>United States</subject><subject>United States Food and Drug Administration</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUstuEzEUHSEQLYE_QGCJTVkk-D0eNiiqeESqxAbWlse-Th0m42DPVOrf42mmVYMqL_w659x7rk5VvSV4RVhNPu3imHrTrQ6xhxWminFOn1XnpGF0KSlmzx-dz6pXOe8wFkxJ-bI6Y7KppaL4vIKNg34IPlgzhNij6NEhgZuugGwCOKCxd5DQcA1IEHzx52MBRAs5f0ZrZE0GlIfR3U5Mg1Js4xAsymPaFo0OObgJFl5XL7zpMryZ90X1-9vXX5c_llc_v28u11dLKxo-LL1RWHDPRQNYirqtBeFOtc4pzgRvrbMW-6ZVqqXlRJmkBrfUSeKodaz2bFG9P-oeupj1PKGsad2QhmOBeUFsjggXzU4fUtibdKujCfruIaatNqk46EBTw6UgHhThhtekNYzVFHvFlLfAW1G0vszVxnYPzpZBJtOdiJ7-9OFab-ONJhjzWhQDi-piVkjx7wh50PuQLXSd6SGOd41T3igppmIf_oM-bW9GbU1xEHofS2E7iep1zRkTSklWUKsnUGU52Adb8uRDeT8h8CPBpphzAv9gkmA9pfG-GT2lUc9pLLR3jwf0QLqPH_sH9DDbQw</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Lefkovich, Charlotte</creator><creator>Rothenberg, Sandra</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0218-3248</orcidid></search><sort><creationdate>20230328</creationdate><title>Identification of predicate creep under the 510(k) process: A case study of a robotic surgical device</title><author>Lefkovich, Charlotte ; Rothenberg, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-fa8054f459e0657b7514d8bdd84354bcdcc0f9b88b2cc02362a0b2d61d2cd37f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biology and Life Sciences</topic><topic>Case reports</topic><topic>Case studies</topic><topic>Complications and side effects</topic><topic>Device Approval</topic><topic>Engineering and Technology</topic><topic>FDA approval</topic><topic>Health care industry</topic><topic>Health risks</topic><topic>Kinetics</topic><topic>Literature reviews</topic><topic>Medical devices</topic><topic>Medical equipment</topic><topic>Medical technology</topic><topic>Medicine and Health Sciences</topic><topic>Patient outcomes</topic><topic>Policy</topic><topic>Power sources</topic><topic>Robotic surgery</topic><topic>Robotic Surgical Procedures</topic><topic>Robotics</topic><topic>Science Policy</topic><topic>Technology application</topic><topic>Transplants & implants</topic><topic>United States</topic><topic>United States Food and Drug Administration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefkovich, Charlotte</creatorcontrib><creatorcontrib>Rothenberg, Sandra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefkovich, Charlotte</au><au>Rothenberg, Sandra</au><au>Wang, Quanzeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of predicate creep under the 510(k) process: A case study of a robotic surgical device</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-03-28</date><risdate>2023</risdate><volume>18</volume><issue>3</issue><spage>e0283442</spage><epage>e0283442</epage><pages>e0283442-e0283442</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The FDA's 510(k) process for medical devices is based on "substantial equivalence" to devices clearedpre-1976 or legally marketed thereafter, known as predicate devices. In the last decade, several high-profile device recalls have drawn attention to this regulatory clearance process and researchers have raised questions about the validity of the 510(k) process as a broad clearance mechanism. One of the issues raised is the risk of predicate creep, a cycle of technology change through repeated clearance of devices based on predicates with slightly different technological characteristics, such as materials and power sources, or have indications for different anatomical sites. This paper proposes a new way to identify potential "predicate creep" through the use of product codes and regulatory classifications. We test this method by applying it to a case study of a Robotic Assisted Surgery (RAS) device, the Intuitive Surgical Da Vinci Si Surgical System. We find that there is evidence of predicate creep using our method, and discuss implications of this method for research and policy.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36976820</pmid><doi>10.1371/journal.pone.0283442</doi><orcidid>https://orcid.org/0000-0002-0218-3248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-03, Vol.18 (3), p.e0283442-e0283442 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2791940504 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Biology and Life Sciences Case reports Case studies Complications and side effects Device Approval Engineering and Technology FDA approval Health care industry Health risks Kinetics Literature reviews Medical devices Medical equipment Medical technology Medicine and Health Sciences Patient outcomes Policy Power sources Robotic surgery Robotic Surgical Procedures Robotics Science Policy Technology application Transplants & implants United States United States Food and Drug Administration |
title | Identification of predicate creep under the 510(k) process: A case study of a robotic surgical device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20predicate%20creep%20under%20the%20510(k)%20process:%20A%20case%20study%20of%20a%20robotic%20surgical%20device&rft.jtitle=PloS%20one&rft.au=Lefkovich,%20Charlotte&rft.date=2023-03-28&rft.volume=18&rft.issue=3&rft.spage=e0283442&rft.epage=e0283442&rft.pages=e0283442-e0283442&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0283442&rft_dat=%3Cgale_plos_%3EA743358863%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791940504&rft_id=info:pmid/36976820&rft_galeid=A743358863&rft_doaj_id=oai_doaj_org_article_2a4651fe814a471ba33720f838fce4b5&rfr_iscdi=true |