Identification of host genomic biomarkers from multiple transcriptomics datasets for diagnosis and therapies of SARS-CoV-2 infections

The pandemic of COVID-19 is a severe threat to human life and the global economy. Despite the success of vaccination efforts in reducing the spread of the virus, the situation remains largely uncontrolled due to the random mutation in the RNA sequence of severe acute respiratory syndrome coronavirus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-03, Vol.18 (3), p.e0281981-e0281981
Hauptverfasser: Sarker, Bandhan, Rahaman, Md Matiur, Islam, Md Ariful, Alamin, Muhammad Habibulla, Husain, Md Maidul, Ferdousi, Farzana, Ahsan, Md Asif, Mollah, Md Nurul Haque
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0281981
container_issue 3
container_start_page e0281981
container_title PloS one
container_volume 18
creator Sarker, Bandhan
Rahaman, Md Matiur
Islam, Md Ariful
Alamin, Muhammad Habibulla
Husain, Md Maidul
Ferdousi, Farzana
Ahsan, Md Asif
Mollah, Md Nurul Haque
description The pandemic of COVID-19 is a severe threat to human life and the global economy. Despite the success of vaccination efforts in reducing the spread of the virus, the situation remains largely uncontrolled due to the random mutation in the RNA sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which demands different variants of effective drugs. Disease-causing gene-mediated proteins are usually used as receptors to explore effective drug molecules. In this study, we analyzed two different RNA-Seq and one microarray gene expression profile datasets by integrating EdgeR, LIMMA, weighted gene co-expression network and robust rank aggregation approaches, which revealed SARS-CoV-2 infection causing eight hub-genes (HubGs) including HubGs; REL, AURKA, AURKB, FBXL3, OAS1, STAT4, MMP2 and IL6 as the host genomic biomarkers. Gene Ontology and pathway enrichment analyses of HubGs significantly enriched some crucial biological processes, molecular functions, cellular components and signaling pathways that are associated with the mechanisms of SARS-CoV-2 infections. Regulatory network analysis identified top-ranked 5 TFs (SRF, PBX1, MEIS1, ESR1 and MYC) and 5 miRNAs (hsa-miR-106b-5p, hsa-miR-20b-5p, hsa-miR-93-5p, hsa-miR-106a-5p and hsa-miR-20a-5p) as the key transcriptional and post-transcriptional regulators of HubGs. Then, we conducted a molecular docking analysis to determine potential drug candidates that could interact with HubGs-mediated receptors. This analysis resulted in the identification of top-ranked ten drug agents, including Nilotinib, Tegobuvir, Digoxin, Proscillaridin, Olysio, Simeprevir, Hesperidin, Oleanolic Acid, Naltrindole and Danoprevir. Finally, we investigated the binding stability of the top-ranked three drug molecules Nilotinib, Tegobuvir and Proscillaridin with the three top-ranked proposed receptors (AURKA, AURKB, OAS1) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore, the findings of this study might be useful resources for diagnosis and therapies of SARS-CoV-2 infections.
doi_str_mv 10.1371/journal.pone.0281981
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2786466384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741069667</galeid><doaj_id>oai_doaj_org_article_3a5cb013f17b4cc585976f3879a6dba7</doaj_id><sourcerecordid>A741069667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693t-9853d108fb5c4303ce733c972aa9b63d880822577c1217797e03a798915bd1483</originalsourceid><addsrcrecordid>eNqNk81u1DAQxyMEoqXwBggsISE4ZLHjxB8ntFrxsVKlSl3o1XIcJ-uSxKntIHgA3hunm1Yb1APywdb4N__xzHiS5CWCK4Qp-nBtR9fLdjXYXq9gxhBn6FFyijjOUpJB_PjofJI88_4awgIzQp4mJ5hwhHFenCZ_tpXug6mNksHYHtga7K0PoNG97YwCpbGddD-086B2tgPd2AYztBoEJ3uvnBnCxHlQySC9DhGzDlRGNr31xgPZVyDstZOD0X5S360vd-nGXqUZMH2t1RTVP0-e1LL1-sW8nyXfP3_6tvmanl982W7W56kiHIeUswJXCLK6LFSOIVaaYqw4zaTkJcEVY5BlWUGpQhmilFMNsaSccVSUFcoZPkteH3SH1noxV9CLjDKSE4JZHontgaisvBaDMzH738JKI24N1jVCumBUqwWWhSohwjWiZa5UwQpOSY0Z5ZJUpaRR6-McbSw7XalYaCfbhejypjd70difAkGIYEGm17ybFZy9GbUPojNe6baVvbbj4eEFIoxPwd78gz6c3kw1MmYQG2BjYDWJijXNESSckElr9QAVV6Vjr-N_q020LxzeLxwiE_Sv0MjRe7HdXf4_e3G1ZN8esXst27D3th1vP80SzA-gctZ7p-v7KiMopnG5q4aYxkXM4xLdXh136N7pbj7wX6DLECs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786466384</pqid></control><display><type>article</type><title>Identification of host genomic biomarkers from multiple transcriptomics datasets for diagnosis and therapies of SARS-CoV-2 infections</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sarker, Bandhan ; Rahaman, Md Matiur ; Islam, Md Ariful ; Alamin, Muhammad Habibulla ; Husain, Md Maidul ; Ferdousi, Farzana ; Ahsan, Md Asif ; Mollah, Md Nurul Haque</creator><contributor>Selvaraj, Chandrabose</contributor><creatorcontrib>Sarker, Bandhan ; Rahaman, Md Matiur ; Islam, Md Ariful ; Alamin, Muhammad Habibulla ; Husain, Md Maidul ; Ferdousi, Farzana ; Ahsan, Md Asif ; Mollah, Md Nurul Haque ; Selvaraj, Chandrabose</creatorcontrib><description>The pandemic of COVID-19 is a severe threat to human life and the global economy. Despite the success of vaccination efforts in reducing the spread of the virus, the situation remains largely uncontrolled due to the random mutation in the RNA sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which demands different variants of effective drugs. Disease-causing gene-mediated proteins are usually used as receptors to explore effective drug molecules. In this study, we analyzed two different RNA-Seq and one microarray gene expression profile datasets by integrating EdgeR, LIMMA, weighted gene co-expression network and robust rank aggregation approaches, which revealed SARS-CoV-2 infection causing eight hub-genes (HubGs) including HubGs; REL, AURKA, AURKB, FBXL3, OAS1, STAT4, MMP2 and IL6 as the host genomic biomarkers. Gene Ontology and pathway enrichment analyses of HubGs significantly enriched some crucial biological processes, molecular functions, cellular components and signaling pathways that are associated with the mechanisms of SARS-CoV-2 infections. Regulatory network analysis identified top-ranked 5 TFs (SRF, PBX1, MEIS1, ESR1 and MYC) and 5 miRNAs (hsa-miR-106b-5p, hsa-miR-20b-5p, hsa-miR-93-5p, hsa-miR-106a-5p and hsa-miR-20a-5p) as the key transcriptional and post-transcriptional regulators of HubGs. Then, we conducted a molecular docking analysis to determine potential drug candidates that could interact with HubGs-mediated receptors. This analysis resulted in the identification of top-ranked ten drug agents, including Nilotinib, Tegobuvir, Digoxin, Proscillaridin, Olysio, Simeprevir, Hesperidin, Oleanolic Acid, Naltrindole and Danoprevir. Finally, we investigated the binding stability of the top-ranked three drug molecules Nilotinib, Tegobuvir and Proscillaridin with the three top-ranked proposed receptors (AURKA, AURKB, OAS1) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore, the findings of this study might be useful resources for diagnosis and therapies of SARS-CoV-2 infections.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0281981</identifier><identifier>PMID: 36913345</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Aurora Kinase A - genetics ; Bioinformatics ; Biological activity ; Biological markers ; Biology and life sciences ; Biomarkers ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - genetics ; COVID-19 Testing ; Datasets ; Diagnosis ; Digoxin ; DNA microarrays ; Drug development ; Drugs ; ESR1 protein ; Gelatinase A ; Gene expression ; Gene Regulatory Networks ; Genes ; Genomics ; Global economy ; Hesperidin ; Humans ; Infections ; Literature reviews ; Medical diagnosis ; Medicine and Health Sciences ; MicroRNAs - genetics ; Molecular docking ; Molecular Docking Simulation ; Mutation ; Myc protein ; Naltrindole ; Network analysis ; Nucleotide sequence ; Oleanolic acid ; Pandemics ; Physical Sciences ; Post-transcription ; Proscillaridin ; Proteins ; Receptors ; Ribonucleic acid ; RNA ; SARS-CoV-2 - genetics ; SARS-CoV-2 - metabolism ; Severe acute respiratory syndrome coronavirus 2 ; Stat4 protein ; Transcriptome ; Transcriptomics ; Vaccination ; Viral diseases ; Viruses</subject><ispartof>PloS one, 2023-03, Vol.18 (3), p.e0281981-e0281981</ispartof><rights>Copyright: © 2023 Sarker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Sarker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Sarker et al 2023 Sarker et al</rights><rights>2023 Sarker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c693t-9853d108fb5c4303ce733c972aa9b63d880822577c1217797e03a798915bd1483</citedby><cites>FETCH-LOGICAL-c693t-9853d108fb5c4303ce733c972aa9b63d880822577c1217797e03a798915bd1483</cites><orcidid>0000-0002-3883-3396 ; 0000-0001-9799-9364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010564/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010564/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36913345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Selvaraj, Chandrabose</contributor><creatorcontrib>Sarker, Bandhan</creatorcontrib><creatorcontrib>Rahaman, Md Matiur</creatorcontrib><creatorcontrib>Islam, Md Ariful</creatorcontrib><creatorcontrib>Alamin, Muhammad Habibulla</creatorcontrib><creatorcontrib>Husain, Md Maidul</creatorcontrib><creatorcontrib>Ferdousi, Farzana</creatorcontrib><creatorcontrib>Ahsan, Md Asif</creatorcontrib><creatorcontrib>Mollah, Md Nurul Haque</creatorcontrib><title>Identification of host genomic biomarkers from multiple transcriptomics datasets for diagnosis and therapies of SARS-CoV-2 infections</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The pandemic of COVID-19 is a severe threat to human life and the global economy. Despite the success of vaccination efforts in reducing the spread of the virus, the situation remains largely uncontrolled due to the random mutation in the RNA sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which demands different variants of effective drugs. Disease-causing gene-mediated proteins are usually used as receptors to explore effective drug molecules. In this study, we analyzed two different RNA-Seq and one microarray gene expression profile datasets by integrating EdgeR, LIMMA, weighted gene co-expression network and robust rank aggregation approaches, which revealed SARS-CoV-2 infection causing eight hub-genes (HubGs) including HubGs; REL, AURKA, AURKB, FBXL3, OAS1, STAT4, MMP2 and IL6 as the host genomic biomarkers. Gene Ontology and pathway enrichment analyses of HubGs significantly enriched some crucial biological processes, molecular functions, cellular components and signaling pathways that are associated with the mechanisms of SARS-CoV-2 infections. Regulatory network analysis identified top-ranked 5 TFs (SRF, PBX1, MEIS1, ESR1 and MYC) and 5 miRNAs (hsa-miR-106b-5p, hsa-miR-20b-5p, hsa-miR-93-5p, hsa-miR-106a-5p and hsa-miR-20a-5p) as the key transcriptional and post-transcriptional regulators of HubGs. Then, we conducted a molecular docking analysis to determine potential drug candidates that could interact with HubGs-mediated receptors. This analysis resulted in the identification of top-ranked ten drug agents, including Nilotinib, Tegobuvir, Digoxin, Proscillaridin, Olysio, Simeprevir, Hesperidin, Oleanolic Acid, Naltrindole and Danoprevir. Finally, we investigated the binding stability of the top-ranked three drug molecules Nilotinib, Tegobuvir and Proscillaridin with the three top-ranked proposed receptors (AURKA, AURKB, OAS1) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore, the findings of this study might be useful resources for diagnosis and therapies of SARS-CoV-2 infections.</description><subject>Analysis</subject><subject>Aurora Kinase A - genetics</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biological markers</subject><subject>Biology and life sciences</subject><subject>Biomarkers</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - genetics</subject><subject>COVID-19 Testing</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Digoxin</subject><subject>DNA microarrays</subject><subject>Drug development</subject><subject>Drugs</subject><subject>ESR1 protein</subject><subject>Gelatinase A</subject><subject>Gene expression</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genomics</subject><subject>Global economy</subject><subject>Hesperidin</subject><subject>Humans</subject><subject>Infections</subject><subject>Literature reviews</subject><subject>Medical diagnosis</subject><subject>Medicine and Health Sciences</subject><subject>MicroRNAs - genetics</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Mutation</subject><subject>Myc protein</subject><subject>Naltrindole</subject><subject>Network analysis</subject><subject>Nucleotide sequence</subject><subject>Oleanolic acid</subject><subject>Pandemics</subject><subject>Physical Sciences</subject><subject>Post-transcription</subject><subject>Proscillaridin</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 - metabolism</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Stat4 protein</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><subject>Vaccination</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk81u1DAQxyMEoqXwBggsISE4ZLHjxB8ntFrxsVKlSl3o1XIcJ-uSxKntIHgA3hunm1Yb1APywdb4N__xzHiS5CWCK4Qp-nBtR9fLdjXYXq9gxhBn6FFyijjOUpJB_PjofJI88_4awgIzQp4mJ5hwhHFenCZ_tpXug6mNksHYHtga7K0PoNG97YwCpbGddD-086B2tgPd2AYztBoEJ3uvnBnCxHlQySC9DhGzDlRGNr31xgPZVyDstZOD0X5S360vd-nGXqUZMH2t1RTVP0-e1LL1-sW8nyXfP3_6tvmanl982W7W56kiHIeUswJXCLK6LFSOIVaaYqw4zaTkJcEVY5BlWUGpQhmilFMNsaSccVSUFcoZPkteH3SH1noxV9CLjDKSE4JZHontgaisvBaDMzH738JKI24N1jVCumBUqwWWhSohwjWiZa5UwQpOSY0Z5ZJUpaRR6-McbSw7XalYaCfbhejypjd70difAkGIYEGm17ybFZy9GbUPojNe6baVvbbj4eEFIoxPwd78gz6c3kw1MmYQG2BjYDWJijXNESSckElr9QAVV6Vjr-N_q020LxzeLxwiE_Sv0MjRe7HdXf4_e3G1ZN8esXst27D3th1vP80SzA-gctZ7p-v7KiMopnG5q4aYxkXM4xLdXh136N7pbj7wX6DLECs</recordid><startdate>20230313</startdate><enddate>20230313</enddate><creator>Sarker, Bandhan</creator><creator>Rahaman, Md Matiur</creator><creator>Islam, Md Ariful</creator><creator>Alamin, Muhammad Habibulla</creator><creator>Husain, Md Maidul</creator><creator>Ferdousi, Farzana</creator><creator>Ahsan, Md Asif</creator><creator>Mollah, Md Nurul Haque</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3883-3396</orcidid><orcidid>https://orcid.org/0000-0001-9799-9364</orcidid></search><sort><creationdate>20230313</creationdate><title>Identification of host genomic biomarkers from multiple transcriptomics datasets for diagnosis and therapies of SARS-CoV-2 infections</title><author>Sarker, Bandhan ; Rahaman, Md Matiur ; Islam, Md Ariful ; Alamin, Muhammad Habibulla ; Husain, Md Maidul ; Ferdousi, Farzana ; Ahsan, Md Asif ; Mollah, Md Nurul Haque</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693t-9853d108fb5c4303ce733c972aa9b63d880822577c1217797e03a798915bd1483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Aurora Kinase A - genetics</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biological markers</topic><topic>Biology and life sciences</topic><topic>Biomarkers</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - genetics</topic><topic>COVID-19 Testing</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Digoxin</topic><topic>DNA microarrays</topic><topic>Drug development</topic><topic>Drugs</topic><topic>ESR1 protein</topic><topic>Gelatinase A</topic><topic>Gene expression</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genomics</topic><topic>Global economy</topic><topic>Hesperidin</topic><topic>Humans</topic><topic>Infections</topic><topic>Literature reviews</topic><topic>Medical diagnosis</topic><topic>Medicine and Health Sciences</topic><topic>MicroRNAs - genetics</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Mutation</topic><topic>Myc protein</topic><topic>Naltrindole</topic><topic>Network analysis</topic><topic>Nucleotide sequence</topic><topic>Oleanolic acid</topic><topic>Pandemics</topic><topic>Physical Sciences</topic><topic>Post-transcription</topic><topic>Proscillaridin</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 - metabolism</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Stat4 protein</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><topic>Vaccination</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarker, Bandhan</creatorcontrib><creatorcontrib>Rahaman, Md Matiur</creatorcontrib><creatorcontrib>Islam, Md Ariful</creatorcontrib><creatorcontrib>Alamin, Muhammad Habibulla</creatorcontrib><creatorcontrib>Husain, Md Maidul</creatorcontrib><creatorcontrib>Ferdousi, Farzana</creatorcontrib><creatorcontrib>Ahsan, Md Asif</creatorcontrib><creatorcontrib>Mollah, Md Nurul Haque</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarker, Bandhan</au><au>Rahaman, Md Matiur</au><au>Islam, Md Ariful</au><au>Alamin, Muhammad Habibulla</au><au>Husain, Md Maidul</au><au>Ferdousi, Farzana</au><au>Ahsan, Md Asif</au><au>Mollah, Md Nurul Haque</au><au>Selvaraj, Chandrabose</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of host genomic biomarkers from multiple transcriptomics datasets for diagnosis and therapies of SARS-CoV-2 infections</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-03-13</date><risdate>2023</risdate><volume>18</volume><issue>3</issue><spage>e0281981</spage><epage>e0281981</epage><pages>e0281981-e0281981</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The pandemic of COVID-19 is a severe threat to human life and the global economy. Despite the success of vaccination efforts in reducing the spread of the virus, the situation remains largely uncontrolled due to the random mutation in the RNA sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which demands different variants of effective drugs. Disease-causing gene-mediated proteins are usually used as receptors to explore effective drug molecules. In this study, we analyzed two different RNA-Seq and one microarray gene expression profile datasets by integrating EdgeR, LIMMA, weighted gene co-expression network and robust rank aggregation approaches, which revealed SARS-CoV-2 infection causing eight hub-genes (HubGs) including HubGs; REL, AURKA, AURKB, FBXL3, OAS1, STAT4, MMP2 and IL6 as the host genomic biomarkers. Gene Ontology and pathway enrichment analyses of HubGs significantly enriched some crucial biological processes, molecular functions, cellular components and signaling pathways that are associated with the mechanisms of SARS-CoV-2 infections. Regulatory network analysis identified top-ranked 5 TFs (SRF, PBX1, MEIS1, ESR1 and MYC) and 5 miRNAs (hsa-miR-106b-5p, hsa-miR-20b-5p, hsa-miR-93-5p, hsa-miR-106a-5p and hsa-miR-20a-5p) as the key transcriptional and post-transcriptional regulators of HubGs. Then, we conducted a molecular docking analysis to determine potential drug candidates that could interact with HubGs-mediated receptors. This analysis resulted in the identification of top-ranked ten drug agents, including Nilotinib, Tegobuvir, Digoxin, Proscillaridin, Olysio, Simeprevir, Hesperidin, Oleanolic Acid, Naltrindole and Danoprevir. Finally, we investigated the binding stability of the top-ranked three drug molecules Nilotinib, Tegobuvir and Proscillaridin with the three top-ranked proposed receptors (AURKA, AURKB, OAS1) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore, the findings of this study might be useful resources for diagnosis and therapies of SARS-CoV-2 infections.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36913345</pmid><doi>10.1371/journal.pone.0281981</doi><tpages>e0281981</tpages><orcidid>https://orcid.org/0000-0002-3883-3396</orcidid><orcidid>https://orcid.org/0000-0001-9799-9364</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-03, Vol.18 (3), p.e0281981-e0281981
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2786466384
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Aurora Kinase A - genetics
Bioinformatics
Biological activity
Biological markers
Biology and life sciences
Biomarkers
Coronaviruses
COVID-19
COVID-19 - diagnosis
COVID-19 - genetics
COVID-19 Testing
Datasets
Diagnosis
Digoxin
DNA microarrays
Drug development
Drugs
ESR1 protein
Gelatinase A
Gene expression
Gene Regulatory Networks
Genes
Genomics
Global economy
Hesperidin
Humans
Infections
Literature reviews
Medical diagnosis
Medicine and Health Sciences
MicroRNAs - genetics
Molecular docking
Molecular Docking Simulation
Mutation
Myc protein
Naltrindole
Network analysis
Nucleotide sequence
Oleanolic acid
Pandemics
Physical Sciences
Post-transcription
Proscillaridin
Proteins
Receptors
Ribonucleic acid
RNA
SARS-CoV-2 - genetics
SARS-CoV-2 - metabolism
Severe acute respiratory syndrome coronavirus 2
Stat4 protein
Transcriptome
Transcriptomics
Vaccination
Viral diseases
Viruses
title Identification of host genomic biomarkers from multiple transcriptomics datasets for diagnosis and therapies of SARS-CoV-2 infections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20host%20genomic%20biomarkers%20from%20multiple%20transcriptomics%20datasets%20for%20diagnosis%20and%20therapies%20of%20SARS-CoV-2%20infections&rft.jtitle=PloS%20one&rft.au=Sarker,%20Bandhan&rft.date=2023-03-13&rft.volume=18&rft.issue=3&rft.spage=e0281981&rft.epage=e0281981&rft.pages=e0281981-e0281981&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0281981&rft_dat=%3Cgale_plos_%3EA741069667%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786466384&rft_id=info:pmid/36913345&rft_galeid=A741069667&rft_doaj_id=oai_doaj_org_article_3a5cb013f17b4cc585976f3879a6dba7&rfr_iscdi=true