Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data. We derive...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-03, Vol.18 (3), p.e0281074-e0281074 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0281074 |
---|---|
container_issue | 3 |
container_start_page | e0281074 |
container_title | PloS one |
container_volume | 18 |
creator | Hawken, Steven Ducharme, Robin Murphy, Malia S Q Olibris, Brieanne Bota, A Brianne Wilson, Lindsay A Cheng, Wei Little, Julian Potter, Beth K Denize, Kathryn M Lamoureux, Monica Henderson, Matthew Rittenhouse, Katelyn J Price, Joan T Mwape, Humphrey Vwalika, Bellington Musonda, Patrick Pervin, Jesmin Chowdhury, A K Azad Rahman, Anisur Chakraborty, Pranesh Stringer, Jeffrey S A Wilson, Kumanan |
description | Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data.
We derived three GA estimation models using ELASTIC NET multivariable linear regression using metabolomic markers from heel-prick blood samples and clinical data from a retrospective cohort of newborns from Ontario, Canada. We conducted internal model validation in an independent cohort of Ontario newborns, and external validation in heel prick and cord blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zambia and Matlab, Bangladesh. Model performance was measured by comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound.
Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The best-performing model accurately estimated GA within about 6 days of ultrasound estimates in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for Bangladesh).
Algorithms developed in Canada provided accurate estimates of GA when applied to external cohorts from Zambia and Bangladesh. Model performance was superior in heel prick data as compared to cord blood data. |
doi_str_mv | 10.1371/journal.pone.0281074 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2783725443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A739784727</galeid><doaj_id>oai_doaj_org_article_236d91e4641b48eaae6f2f247b80687b</doaj_id><sourcerecordid>A739784727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f9a5062ccfdf32e7996abfd85d1ae3254dac03fce385975986c3d55954cfda443</originalsourceid><addsrcrecordid>eNqNk8tu1DAUhiMEoqXwBggiISFYzJDYiR1vkKpyG6lSJW5b64xznHFx7MFOKngSXhenk1YzqAuURRz7-_8Tn0uWPS2LZUl5-ebSj8GBXW69w2VBmrLg1b3suBSULBgp6P299VH2KMbLoqhpw9jD7IiyhnPG6XH25x1eofXbHt2Qg2tz_DXg5JtfgTUtDMa73Ou8B7UxDnOLEJxxXQ6288EMmz7m2od86-PgYEi6DuNwLUtr6DBPn6bf-YxxUiprnFHpNLnDdcweB1h763ujUqDwA0N8nD3QYCM-md8n2bcP77-efVqcX3xcnZ2eLxQTZFhoAXXBiFK61ZQgF4LBWrdN3ZaAlNRVC6qgWiFtasFr0TBF27oWdZUUUFX0JHu-891aH-Wc0ygJbyhP8oomYrUjWg-XchvSZcJv6cHI6w0fOglhMMqiJJS1osSKVeW6ahAAmSaaVHzdFCnj6-T1do42rntsVUp6AHtgenjizEZ2_koKkQrW8GTwajYI_ueYUit7ExVaCw79OP-3IIRN6It_0LtvN1MdpAsYp32KqyZTecqp4E3FyeS1vINKT4upZqkBtUn7B4LXB4LEDKmzOhhjlKsvn_-fvfh-yL7cYzcIdthEb8epveIhWO1AFXyMAfVtkstCTvNzkw05zY-c5yfJnu0X6FZ0MzD0L550Gd4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783725443</pqid></control><display><type>article</type><title>Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Hawken, Steven ; Ducharme, Robin ; Murphy, Malia S Q ; Olibris, Brieanne ; Bota, A Brianne ; Wilson, Lindsay A ; Cheng, Wei ; Little, Julian ; Potter, Beth K ; Denize, Kathryn M ; Lamoureux, Monica ; Henderson, Matthew ; Rittenhouse, Katelyn J ; Price, Joan T ; Mwape, Humphrey ; Vwalika, Bellington ; Musonda, Patrick ; Pervin, Jesmin ; Chowdhury, A K Azad ; Rahman, Anisur ; Chakraborty, Pranesh ; Stringer, Jeffrey S A ; Wilson, Kumanan</creator><creatorcontrib>Hawken, Steven ; Ducharme, Robin ; Murphy, Malia S Q ; Olibris, Brieanne ; Bota, A Brianne ; Wilson, Lindsay A ; Cheng, Wei ; Little, Julian ; Potter, Beth K ; Denize, Kathryn M ; Lamoureux, Monica ; Henderson, Matthew ; Rittenhouse, Katelyn J ; Price, Joan T ; Mwape, Humphrey ; Vwalika, Bellington ; Musonda, Patrick ; Pervin, Jesmin ; Chowdhury, A K Azad ; Rahman, Anisur ; Chakraborty, Pranesh ; Stringer, Jeffrey S A ; Wilson, Kumanan</creatorcontrib><description>Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data.
We derived three GA estimation models using ELASTIC NET multivariable linear regression using metabolomic markers from heel-prick blood samples and clinical data from a retrospective cohort of newborns from Ontario, Canada. We conducted internal model validation in an independent cohort of Ontario newborns, and external validation in heel prick and cord blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zambia and Matlab, Bangladesh. Model performance was measured by comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound.
Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The best-performing model accurately estimated GA within about 6 days of ultrasound estimates in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for Bangladesh).
Algorithms developed in Canada provided accurate estimates of GA when applied to external cohorts from Zambia and Bangladesh. Model performance was superior in heel prick data as compared to cord blood data.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0281074</identifier><identifier>PMID: 36877673</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Age ; Age determination ; Algorithms ; Amino acids ; Analysis ; Ankle Injuries ; Babies ; Biology and Life Sciences ; Birth ; Birth rate ; Birth weight ; Blood ; Chronology ; Confidence intervals ; Cord blood ; Enzymes ; Estimates ; Female ; Gestational Age ; Health surveillance ; Hemoglobin ; Humans ; Infant, Newborn ; Infants (Premature) ; Knee Injuries ; Laboratories ; Learning algorithms ; Low income areas ; Machine Learning ; Medical screening ; Medicine and Health Sciences ; Metabolomics ; Methods ; Modelling ; Multiple births ; Neonates ; Newborn babies ; Ontario ; People and Places ; Performance evaluation ; Pregnancy ; Premature Birth ; Prospective Studies ; Regression analysis ; Research ethics ; Retrospective Studies ; Ultrasonic imaging ; Ultrasound ; Values ; Zambia</subject><ispartof>PloS one, 2023-03, Vol.18 (3), p.e0281074-e0281074</ispartof><rights>Copyright: © 2023 Hawken et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Hawken et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Hawken et al 2023 Hawken et al</rights><rights>2023 Hawken et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f9a5062ccfdf32e7996abfd85d1ae3254dac03fce385975986c3d55954cfda443</citedby><cites>FETCH-LOGICAL-c692t-f9a5062ccfdf32e7996abfd85d1ae3254dac03fce385975986c3d55954cfda443</cites><orcidid>0000-0002-3341-9022 ; 0000-0002-8082-4178 ; 0000-0002-9590-7216 ; 0000-0002-1475-4079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987787/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987787/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36877673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hawken, Steven</creatorcontrib><creatorcontrib>Ducharme, Robin</creatorcontrib><creatorcontrib>Murphy, Malia S Q</creatorcontrib><creatorcontrib>Olibris, Brieanne</creatorcontrib><creatorcontrib>Bota, A Brianne</creatorcontrib><creatorcontrib>Wilson, Lindsay A</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Little, Julian</creatorcontrib><creatorcontrib>Potter, Beth K</creatorcontrib><creatorcontrib>Denize, Kathryn M</creatorcontrib><creatorcontrib>Lamoureux, Monica</creatorcontrib><creatorcontrib>Henderson, Matthew</creatorcontrib><creatorcontrib>Rittenhouse, Katelyn J</creatorcontrib><creatorcontrib>Price, Joan T</creatorcontrib><creatorcontrib>Mwape, Humphrey</creatorcontrib><creatorcontrib>Vwalika, Bellington</creatorcontrib><creatorcontrib>Musonda, Patrick</creatorcontrib><creatorcontrib>Pervin, Jesmin</creatorcontrib><creatorcontrib>Chowdhury, A K Azad</creatorcontrib><creatorcontrib>Rahman, Anisur</creatorcontrib><creatorcontrib>Chakraborty, Pranesh</creatorcontrib><creatorcontrib>Stringer, Jeffrey S A</creatorcontrib><creatorcontrib>Wilson, Kumanan</creatorcontrib><title>Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data.
We derived three GA estimation models using ELASTIC NET multivariable linear regression using metabolomic markers from heel-prick blood samples and clinical data from a retrospective cohort of newborns from Ontario, Canada. We conducted internal model validation in an independent cohort of Ontario newborns, and external validation in heel prick and cord blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zambia and Matlab, Bangladesh. Model performance was measured by comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound.
Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The best-performing model accurately estimated GA within about 6 days of ultrasound estimates in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for Bangladesh).
Algorithms developed in Canada provided accurate estimates of GA when applied to external cohorts from Zambia and Bangladesh. Model performance was superior in heel prick data as compared to cord blood data.</description><subject>Accuracy</subject><subject>Age</subject><subject>Age determination</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Ankle Injuries</subject><subject>Babies</subject><subject>Biology and Life Sciences</subject><subject>Birth</subject><subject>Birth rate</subject><subject>Birth weight</subject><subject>Blood</subject><subject>Chronology</subject><subject>Confidence intervals</subject><subject>Cord blood</subject><subject>Enzymes</subject><subject>Estimates</subject><subject>Female</subject><subject>Gestational Age</subject><subject>Health surveillance</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Infants (Premature)</subject><subject>Knee Injuries</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Low income areas</subject><subject>Machine Learning</subject><subject>Medical screening</subject><subject>Medicine and Health Sciences</subject><subject>Metabolomics</subject><subject>Methods</subject><subject>Modelling</subject><subject>Multiple births</subject><subject>Neonates</subject><subject>Newborn babies</subject><subject>Ontario</subject><subject>People and Places</subject><subject>Performance evaluation</subject><subject>Pregnancy</subject><subject>Premature Birth</subject><subject>Prospective Studies</subject><subject>Regression analysis</subject><subject>Research ethics</subject><subject>Retrospective Studies</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>Values</subject><subject>Zambia</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8tu1DAUhiMEoqXwBggiISFYzJDYiR1vkKpyG6lSJW5b64xznHFx7MFOKngSXhenk1YzqAuURRz7-_8Tn0uWPS2LZUl5-ebSj8GBXW69w2VBmrLg1b3suBSULBgp6P299VH2KMbLoqhpw9jD7IiyhnPG6XH25x1eofXbHt2Qg2tz_DXg5JtfgTUtDMa73Ou8B7UxDnOLEJxxXQ6288EMmz7m2od86-PgYEi6DuNwLUtr6DBPn6bf-YxxUiprnFHpNLnDdcweB1h763ujUqDwA0N8nD3QYCM-md8n2bcP77-efVqcX3xcnZ2eLxQTZFhoAXXBiFK61ZQgF4LBWrdN3ZaAlNRVC6qgWiFtasFr0TBF27oWdZUUUFX0JHu-891aH-Wc0ygJbyhP8oomYrUjWg-XchvSZcJv6cHI6w0fOglhMMqiJJS1osSKVeW6ahAAmSaaVHzdFCnj6-T1do42rntsVUp6AHtgenjizEZ2_koKkQrW8GTwajYI_ueYUit7ExVaCw79OP-3IIRN6It_0LtvN1MdpAsYp32KqyZTecqp4E3FyeS1vINKT4upZqkBtUn7B4LXB4LEDKmzOhhjlKsvn_-fvfh-yL7cYzcIdthEb8epveIhWO1AFXyMAfVtkstCTvNzkw05zY-c5yfJnu0X6FZ0MzD0L550Gd4</recordid><startdate>20230306</startdate><enddate>20230306</enddate><creator>Hawken, Steven</creator><creator>Ducharme, Robin</creator><creator>Murphy, Malia S Q</creator><creator>Olibris, Brieanne</creator><creator>Bota, A Brianne</creator><creator>Wilson, Lindsay A</creator><creator>Cheng, Wei</creator><creator>Little, Julian</creator><creator>Potter, Beth K</creator><creator>Denize, Kathryn M</creator><creator>Lamoureux, Monica</creator><creator>Henderson, Matthew</creator><creator>Rittenhouse, Katelyn J</creator><creator>Price, Joan T</creator><creator>Mwape, Humphrey</creator><creator>Vwalika, Bellington</creator><creator>Musonda, Patrick</creator><creator>Pervin, Jesmin</creator><creator>Chowdhury, A K Azad</creator><creator>Rahman, Anisur</creator><creator>Chakraborty, Pranesh</creator><creator>Stringer, Jeffrey S A</creator><creator>Wilson, Kumanan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3341-9022</orcidid><orcidid>https://orcid.org/0000-0002-8082-4178</orcidid><orcidid>https://orcid.org/0000-0002-9590-7216</orcidid><orcidid>https://orcid.org/0000-0002-1475-4079</orcidid></search><sort><creationdate>20230306</creationdate><title>Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers</title><author>Hawken, Steven ; Ducharme, Robin ; Murphy, Malia S Q ; Olibris, Brieanne ; Bota, A Brianne ; Wilson, Lindsay A ; Cheng, Wei ; Little, Julian ; Potter, Beth K ; Denize, Kathryn M ; Lamoureux, Monica ; Henderson, Matthew ; Rittenhouse, Katelyn J ; Price, Joan T ; Mwape, Humphrey ; Vwalika, Bellington ; Musonda, Patrick ; Pervin, Jesmin ; Chowdhury, A K Azad ; Rahman, Anisur ; Chakraborty, Pranesh ; Stringer, Jeffrey S A ; Wilson, Kumanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f9a5062ccfdf32e7996abfd85d1ae3254dac03fce385975986c3d55954cfda443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Age</topic><topic>Age determination</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Ankle Injuries</topic><topic>Babies</topic><topic>Biology and Life Sciences</topic><topic>Birth</topic><topic>Birth rate</topic><topic>Birth weight</topic><topic>Blood</topic><topic>Chronology</topic><topic>Confidence intervals</topic><topic>Cord blood</topic><topic>Enzymes</topic><topic>Estimates</topic><topic>Female</topic><topic>Gestational Age</topic><topic>Health surveillance</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Infants (Premature)</topic><topic>Knee Injuries</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Low income areas</topic><topic>Machine Learning</topic><topic>Medical screening</topic><topic>Medicine and Health Sciences</topic><topic>Metabolomics</topic><topic>Methods</topic><topic>Modelling</topic><topic>Multiple births</topic><topic>Neonates</topic><topic>Newborn babies</topic><topic>Ontario</topic><topic>People and Places</topic><topic>Performance evaluation</topic><topic>Pregnancy</topic><topic>Premature Birth</topic><topic>Prospective Studies</topic><topic>Regression analysis</topic><topic>Research ethics</topic><topic>Retrospective Studies</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>Values</topic><topic>Zambia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hawken, Steven</creatorcontrib><creatorcontrib>Ducharme, Robin</creatorcontrib><creatorcontrib>Murphy, Malia S Q</creatorcontrib><creatorcontrib>Olibris, Brieanne</creatorcontrib><creatorcontrib>Bota, A Brianne</creatorcontrib><creatorcontrib>Wilson, Lindsay A</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Little, Julian</creatorcontrib><creatorcontrib>Potter, Beth K</creatorcontrib><creatorcontrib>Denize, Kathryn M</creatorcontrib><creatorcontrib>Lamoureux, Monica</creatorcontrib><creatorcontrib>Henderson, Matthew</creatorcontrib><creatorcontrib>Rittenhouse, Katelyn J</creatorcontrib><creatorcontrib>Price, Joan T</creatorcontrib><creatorcontrib>Mwape, Humphrey</creatorcontrib><creatorcontrib>Vwalika, Bellington</creatorcontrib><creatorcontrib>Musonda, Patrick</creatorcontrib><creatorcontrib>Pervin, Jesmin</creatorcontrib><creatorcontrib>Chowdhury, A K Azad</creatorcontrib><creatorcontrib>Rahman, Anisur</creatorcontrib><creatorcontrib>Chakraborty, Pranesh</creatorcontrib><creatorcontrib>Stringer, Jeffrey S A</creatorcontrib><creatorcontrib>Wilson, Kumanan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawken, Steven</au><au>Ducharme, Robin</au><au>Murphy, Malia S Q</au><au>Olibris, Brieanne</au><au>Bota, A Brianne</au><au>Wilson, Lindsay A</au><au>Cheng, Wei</au><au>Little, Julian</au><au>Potter, Beth K</au><au>Denize, Kathryn M</au><au>Lamoureux, Monica</au><au>Henderson, Matthew</au><au>Rittenhouse, Katelyn J</au><au>Price, Joan T</au><au>Mwape, Humphrey</au><au>Vwalika, Bellington</au><au>Musonda, Patrick</au><au>Pervin, Jesmin</au><au>Chowdhury, A K Azad</au><au>Rahman, Anisur</au><au>Chakraborty, Pranesh</au><au>Stringer, Jeffrey S A</au><au>Wilson, Kumanan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-03-06</date><risdate>2023</risdate><volume>18</volume><issue>3</issue><spage>e0281074</spage><epage>e0281074</epage><pages>e0281074-e0281074</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data.
We derived three GA estimation models using ELASTIC NET multivariable linear regression using metabolomic markers from heel-prick blood samples and clinical data from a retrospective cohort of newborns from Ontario, Canada. We conducted internal model validation in an independent cohort of Ontario newborns, and external validation in heel prick and cord blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zambia and Matlab, Bangladesh. Model performance was measured by comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound.
Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The best-performing model accurately estimated GA within about 6 days of ultrasound estimates in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for Bangladesh).
Algorithms developed in Canada provided accurate estimates of GA when applied to external cohorts from Zambia and Bangladesh. Model performance was superior in heel prick data as compared to cord blood data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36877673</pmid><doi>10.1371/journal.pone.0281074</doi><tpages>e0281074</tpages><orcidid>https://orcid.org/0000-0002-3341-9022</orcidid><orcidid>https://orcid.org/0000-0002-8082-4178</orcidid><orcidid>https://orcid.org/0000-0002-9590-7216</orcidid><orcidid>https://orcid.org/0000-0002-1475-4079</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-03, Vol.18 (3), p.e0281074-e0281074 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2783725443 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Accuracy Age Age determination Algorithms Amino acids Analysis Ankle Injuries Babies Biology and Life Sciences Birth Birth rate Birth weight Blood Chronology Confidence intervals Cord blood Enzymes Estimates Female Gestational Age Health surveillance Hemoglobin Humans Infant, Newborn Infants (Premature) Knee Injuries Laboratories Learning algorithms Low income areas Machine Learning Medical screening Medicine and Health Sciences Metabolomics Methods Modelling Multiple births Neonates Newborn babies Ontario People and Places Performance evaluation Pregnancy Premature Birth Prospective Studies Regression analysis Research ethics Retrospective Studies Ultrasonic imaging Ultrasound Values Zambia |
title | Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20external%20validation%20of%20machine%20learning%20algorithms%20for%20postnatal%20gestational%20age%20estimation%20using%20clinical%20data%20and%20metabolomic%20markers&rft.jtitle=PloS%20one&rft.au=Hawken,%20Steven&rft.date=2023-03-06&rft.volume=18&rft.issue=3&rft.spage=e0281074&rft.epage=e0281074&rft.pages=e0281074-e0281074&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0281074&rft_dat=%3Cgale_plos_%3EA739784727%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783725443&rft_id=info:pmid/36877673&rft_galeid=A739784727&rft_doaj_id=oai_doaj_org_article_236d91e4641b48eaae6f2f247b80687b&rfr_iscdi=true |