Machine learning estimation of crude oil viscosity as function of API, temperature, and oil composition: Model optimization and design space

Measurement of viscosity of crude oil is critical for reservoir simulators. Computational modeling is a useful tool for correlation of crude oil viscosity to reservoir conditions such as pressure, temperature, and fluid compositions. In this work, multiple distinct models are applied to the availabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-02, Vol.18 (2), p.e0282084-e0282084
Hauptverfasser: Li, Daihong, Zhang, Xiaoyu, Kang, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0282084
container_issue 2
container_start_page e0282084
container_title PloS one
container_volume 18
creator Li, Daihong
Zhang, Xiaoyu
Kang, Qian
description Measurement of viscosity of crude oil is critical for reservoir simulators. Computational modeling is a useful tool for correlation of crude oil viscosity to reservoir conditions such as pressure, temperature, and fluid compositions. In this work, multiple distinct models are applied to the available dataset to predict heavy-oil viscosity as function of a variety of process parameters and oil properties. The computational techniques utilized in this work are Decision Tree (DT), MLP, and GRNN which were utilized in estimation of heavy crude oil samples collected from middle eastern oil fields. For the estimation of viscosity, the firefly algorithm (FA) was employed to optimize the hyper-parameters of the machine learning models. The RMSE error rates for the final models of DT, MLP, and GRNN are 40.52, 25.08, and 30.83, respectively. Also, the R2-scores are 0.921, 0. 978, and 0.933, respectively. Based on this and other criteria, MLP is chosen as the best model for this study in estimating the values of crude oil viscosity.
doi_str_mv 10.1371/journal.pone.0282084
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2777680984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A737642762</galeid><doaj_id>oai_doaj_org_article_5b459f98c15f473ead88529eafc759ed</doaj_id><sourcerecordid>A737642762</sourcerecordid><originalsourceid>FETCH-LOGICAL-a645t-1f9c7af197918df2da87517d2015745dc51797492630b9540daf68c58a14d7493</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7jr6DUQDgijsjE3SNokPwrB4GdhlxdtryOTSydBJatIurp_BD206l2Uq-yB9aHP6-_9Pck5Olj2F-QxiAt-sfR-caGatd3qWI4pyWtzLTiHDaFqhHN8_-j7JHsW4zvMS06p6mJ3giuY5pvg0-3Mp5Mo6DRotgrOuBjp2diM66x3wBsjQKw28bcC1jdJH290AEYHpnTwg88-LM9DpTauD6Pqgz4BwaiuRftMOkgS-BZde6Qb4Nrnb3zv_gVM62tqB2AqpH2cPjGiifrJ_T7LvH95_O_80vbj6uDifX0xFVZTdFBomiTCQEQapMkgJSkpIFMphSYpSybRgpGCowvmSlUWuhKmoLKmAhUpxPMme73zbxke-L2TkiBCSCsNokYjFjlBerHkbUkXCDffC8m3Ah5qL0FnZaF4ui5IZRiUsTUGwForSEjEtjCQl0yp5vdtn65cbraR2XRDNyHT8x9kVr_01ZwwPu00Gr_YGwf_sU3_4JvVCN41w2vfbfVNEIErZJ9mLf9C7T7enapEOYJ3xKa8cTPmcYFIViFQoUbM7qPQovbEy3TpjU3wkeD0SJKbTv7pa9DHyxdcv_89e_RizL4_YlRZNt4q-6Yc7FMdgsQNl8DEGbW6LDHM-DM2hGnwYGr4fmiR7dtygW9FhSvBf6PISrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777680984</pqid></control><display><type>article</type><title>Machine learning estimation of crude oil viscosity as function of API, temperature, and oil composition: Model optimization and design space</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Daihong ; Zhang, Xiaoyu ; Kang, Qian</creator><contributor>Peng, Lu</contributor><creatorcontrib>Li, Daihong ; Zhang, Xiaoyu ; Kang, Qian ; Peng, Lu</creatorcontrib><description>Measurement of viscosity of crude oil is critical for reservoir simulators. Computational modeling is a useful tool for correlation of crude oil viscosity to reservoir conditions such as pressure, temperature, and fluid compositions. In this work, multiple distinct models are applied to the available dataset to predict heavy-oil viscosity as function of a variety of process parameters and oil properties. The computational techniques utilized in this work are Decision Tree (DT), MLP, and GRNN which were utilized in estimation of heavy crude oil samples collected from middle eastern oil fields. For the estimation of viscosity, the firefly algorithm (FA) was employed to optimize the hyper-parameters of the machine learning models. The RMSE error rates for the final models of DT, MLP, and GRNN are 40.52, 25.08, and 30.83, respectively. Also, the R2-scores are 0.921, 0. 978, and 0.933, respectively. Based on this and other criteria, MLP is chosen as the best model for this study in estimating the values of crude oil viscosity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0282084</identifier><identifier>PMID: 36800383</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Analysis ; Biology and Life Sciences ; Chemical properties ; Composition ; Computer and Information Sciences ; Computer applications ; Computer simulation ; Computer-generated environments ; Crude oil ; Datasets ; Decision making ; Decision trees ; Design optimization ; Engineering and Technology ; Estimation ; Flight simulators ; Health aspects ; Heavy petroleum ; Heuristic methods ; Learning algorithms ; Machine Learning ; Mathematical models ; Methods ; Modelling ; Neural networks ; Oil and Gas Fields ; Oil fields ; Oils &amp; fats ; Optimization ; Performance evaluation ; Petroleum ; Physical Sciences ; Process parameters ; Research and Analysis Methods ; Reservoirs ; Root-mean-square errors ; Statistical analysis ; Temperature ; Variables ; Viscosity ; Viscosity measurement</subject><ispartof>PloS one, 2023-02, Vol.18 (2), p.e0282084-e0282084</ispartof><rights>Copyright: © 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Li et al 2023 Li et al</rights><rights>2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a645t-1f9c7af197918df2da87517d2015745dc51797492630b9540daf68c58a14d7493</citedby><cites>FETCH-LOGICAL-a645t-1f9c7af197918df2da87517d2015745dc51797492630b9540daf68c58a14d7493</cites><orcidid>0000-0001-5646-8663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937493/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937493/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36800383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Peng, Lu</contributor><creatorcontrib>Li, Daihong</creatorcontrib><creatorcontrib>Zhang, Xiaoyu</creatorcontrib><creatorcontrib>Kang, Qian</creatorcontrib><title>Machine learning estimation of crude oil viscosity as function of API, temperature, and oil composition: Model optimization and design space</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Measurement of viscosity of crude oil is critical for reservoir simulators. Computational modeling is a useful tool for correlation of crude oil viscosity to reservoir conditions such as pressure, temperature, and fluid compositions. In this work, multiple distinct models are applied to the available dataset to predict heavy-oil viscosity as function of a variety of process parameters and oil properties. The computational techniques utilized in this work are Decision Tree (DT), MLP, and GRNN which were utilized in estimation of heavy crude oil samples collected from middle eastern oil fields. For the estimation of viscosity, the firefly algorithm (FA) was employed to optimize the hyper-parameters of the machine learning models. The RMSE error rates for the final models of DT, MLP, and GRNN are 40.52, 25.08, and 30.83, respectively. Also, the R2-scores are 0.921, 0. 978, and 0.933, respectively. Based on this and other criteria, MLP is chosen as the best model for this study in estimating the values of crude oil viscosity.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Chemical properties</subject><subject>Composition</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Crude oil</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Design optimization</subject><subject>Engineering and Technology</subject><subject>Estimation</subject><subject>Flight simulators</subject><subject>Health aspects</subject><subject>Heavy petroleum</subject><subject>Heuristic methods</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Oil and Gas Fields</subject><subject>Oil fields</subject><subject>Oils &amp; fats</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Petroleum</subject><subject>Physical Sciences</subject><subject>Process parameters</subject><subject>Research and Analysis Methods</subject><subject>Reservoirs</subject><subject>Root-mean-square errors</subject><subject>Statistical analysis</subject><subject>Temperature</subject><subject>Variables</subject><subject>Viscosity</subject><subject>Viscosity measurement</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7jr6DUQDgijsjE3SNokPwrB4GdhlxdtryOTSydBJatIurp_BD206l2Uq-yB9aHP6-_9Pck5Olj2F-QxiAt-sfR-caGatd3qWI4pyWtzLTiHDaFqhHN8_-j7JHsW4zvMS06p6mJ3giuY5pvg0-3Mp5Mo6DRotgrOuBjp2diM66x3wBsjQKw28bcC1jdJH290AEYHpnTwg88-LM9DpTauD6Pqgz4BwaiuRftMOkgS-BZde6Qb4Nrnb3zv_gVM62tqB2AqpH2cPjGiifrJ_T7LvH95_O_80vbj6uDifX0xFVZTdFBomiTCQEQapMkgJSkpIFMphSYpSybRgpGCowvmSlUWuhKmoLKmAhUpxPMme73zbxke-L2TkiBCSCsNokYjFjlBerHkbUkXCDffC8m3Ah5qL0FnZaF4ui5IZRiUsTUGwForSEjEtjCQl0yp5vdtn65cbraR2XRDNyHT8x9kVr_01ZwwPu00Gr_YGwf_sU3_4JvVCN41w2vfbfVNEIErZJ9mLf9C7T7enapEOYJ3xKa8cTPmcYFIViFQoUbM7qPQovbEy3TpjU3wkeD0SJKbTv7pa9DHyxdcv_89e_RizL4_YlRZNt4q-6Yc7FMdgsQNl8DEGbW6LDHM-DM2hGnwYGr4fmiR7dtygW9FhSvBf6PISrA</recordid><startdate>20230217</startdate><enddate>20230217</enddate><creator>Li, Daihong</creator><creator>Zhang, Xiaoyu</creator><creator>Kang, Qian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5646-8663</orcidid></search><sort><creationdate>20230217</creationdate><title>Machine learning estimation of crude oil viscosity as function of API, temperature, and oil composition: Model optimization and design space</title><author>Li, Daihong ; Zhang, Xiaoyu ; Kang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a645t-1f9c7af197918df2da87517d2015745dc51797492630b9540daf68c58a14d7493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Chemical properties</topic><topic>Composition</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Crude oil</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Design optimization</topic><topic>Engineering and Technology</topic><topic>Estimation</topic><topic>Flight simulators</topic><topic>Health aspects</topic><topic>Heavy petroleum</topic><topic>Heuristic methods</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Oil and Gas Fields</topic><topic>Oil fields</topic><topic>Oils &amp; fats</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Petroleum</topic><topic>Physical Sciences</topic><topic>Process parameters</topic><topic>Research and Analysis Methods</topic><topic>Reservoirs</topic><topic>Root-mean-square errors</topic><topic>Statistical analysis</topic><topic>Temperature</topic><topic>Variables</topic><topic>Viscosity</topic><topic>Viscosity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Daihong</creatorcontrib><creatorcontrib>Zhang, Xiaoyu</creatorcontrib><creatorcontrib>Kang, Qian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Daihong</au><au>Zhang, Xiaoyu</au><au>Kang, Qian</au><au>Peng, Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning estimation of crude oil viscosity as function of API, temperature, and oil composition: Model optimization and design space</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-02-17</date><risdate>2023</risdate><volume>18</volume><issue>2</issue><spage>e0282084</spage><epage>e0282084</epage><pages>e0282084-e0282084</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Measurement of viscosity of crude oil is critical for reservoir simulators. Computational modeling is a useful tool for correlation of crude oil viscosity to reservoir conditions such as pressure, temperature, and fluid compositions. In this work, multiple distinct models are applied to the available dataset to predict heavy-oil viscosity as function of a variety of process parameters and oil properties. The computational techniques utilized in this work are Decision Tree (DT), MLP, and GRNN which were utilized in estimation of heavy crude oil samples collected from middle eastern oil fields. For the estimation of viscosity, the firefly algorithm (FA) was employed to optimize the hyper-parameters of the machine learning models. The RMSE error rates for the final models of DT, MLP, and GRNN are 40.52, 25.08, and 30.83, respectively. Also, the R2-scores are 0.921, 0. 978, and 0.933, respectively. Based on this and other criteria, MLP is chosen as the best model for this study in estimating the values of crude oil viscosity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36800383</pmid><doi>10.1371/journal.pone.0282084</doi><tpages>e0282084</tpages><orcidid>https://orcid.org/0000-0001-5646-8663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-02, Vol.18 (2), p.e0282084-e0282084
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2777680984
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Algorithms
Analysis
Biology and Life Sciences
Chemical properties
Composition
Computer and Information Sciences
Computer applications
Computer simulation
Computer-generated environments
Crude oil
Datasets
Decision making
Decision trees
Design optimization
Engineering and Technology
Estimation
Flight simulators
Health aspects
Heavy petroleum
Heuristic methods
Learning algorithms
Machine Learning
Mathematical models
Methods
Modelling
Neural networks
Oil and Gas Fields
Oil fields
Oils & fats
Optimization
Performance evaluation
Petroleum
Physical Sciences
Process parameters
Research and Analysis Methods
Reservoirs
Root-mean-square errors
Statistical analysis
Temperature
Variables
Viscosity
Viscosity measurement
title Machine learning estimation of crude oil viscosity as function of API, temperature, and oil composition: Model optimization and design space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20estimation%20of%20crude%20oil%20viscosity%20as%20function%20of%20API,%20temperature,%20and%20oil%20composition:%20Model%20optimization%20and%20design%20space&rft.jtitle=PloS%20one&rft.au=Li,%20Daihong&rft.date=2023-02-17&rft.volume=18&rft.issue=2&rft.spage=e0282084&rft.epage=e0282084&rft.pages=e0282084-e0282084&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0282084&rft_dat=%3Cgale_plos_%3EA737642762%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777680984&rft_id=info:pmid/36800383&rft_galeid=A737642762&rft_doaj_id=oai_doaj_org_article_5b459f98c15f473ead88529eafc759ed&rfr_iscdi=true