African swine fever virus transmembrane protein pEP84R guides core assembly

African swine fever virus (ASFV) causes a devastating hemorrhagic disease with worldwide circulation and no widely available therapeutic prevention. The infectious particle has a multilayered architecture that is articulated upon an endoplasmic reticulum (ER)-derived inner envelope. This membrane ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2023-01, Vol.19 (1), p.e1011136-e1011136
Hauptverfasser: Alejo, Alí, García-Castey, Mayte, Guerra, Milagros, Hernáez, Bruno, Martín, Verónica, Matamoros, Tania, Andrés, Germán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1011136
container_issue 1
container_start_page e1011136
container_title PLoS pathogens
container_volume 19
creator Alejo, Alí
García-Castey, Mayte
Guerra, Milagros
Hernáez, Bruno
Martín, Verónica
Matamoros, Tania
Andrés, Germán
description African swine fever virus (ASFV) causes a devastating hemorrhagic disease with worldwide circulation and no widely available therapeutic prevention. The infectious particle has a multilayered architecture that is articulated upon an endoplasmic reticulum (ER)-derived inner envelope. This membrane acts as docking platform for the assembly of the outer icosahedral capsid and the underlying core shell, a bridging layer required for the formation of the central genome-containing nucleoid. While the details of outer capsid assembly are relatively well understood, those of core formation remain unclear. Here we report the functional characterization of pEP84R, a transmembrane polypeptide embedded in the inner envelope that surrounds the viral core. Using an ASFV recombinant inducibly expressing the EP84R gene, we show that absence of pEP84R results in the formation of non-infectious core-less icosahedral particles displaying a significant DNA-packaging defect. Concomitantly, aberrant core shell-like structures formed by co-assembly of viral polyproteins pp220 and pp62 are mistargeted to non-ER membranes, as also occurs when these are co-expressed in the absence of other viral proteins. Interestingly, co-expression of both polyproteins with pEP84R led to the formation of ER-targeted core shell-like assemblies and co-immunoprecipitation assays showed that pEP84R binds to the N-terminal region of pp220. Altogether, these results indicate that pEP84R plays a crucial role in core assembly by targeting the core shell polyproteins to the inner viral envelope, which enables subsequent genome packaging and nucleoid formation. These findings unveil a key regulatory mechanism for ASFV morphogenesis and identify a relevant novel target for the development of therapeutic tools against this re-emerging threat.
doi_str_mv 10.1371/journal.ppat.1011136
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2777449577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A737310340</galeid><doaj_id>oai_doaj_org_article_842527c4c62845cbbff7372420ddc380</doaj_id><sourcerecordid>A737310340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-5e097bc87a05516240eca06f93eb0f7d1b1d711edd3b7d3eeed59a9c587790ac3</originalsourceid><addsrcrecordid>eNqVksFu1DAQhiMEoqXwBggicYHDLp7YsZML0qpqYUUFqMDZcuzJ4lUSBztZ2rfH6aZVF_WCfLA1_uafmV-TJC-BLIEKeL91o-9Us-x7NSyBAADlj5JjyHO6EFSwx_feR8mzELaEMKDAnyZHlAvglLHj5POq9larLg1_bIdpjTv06c76MaSDV11osa3ijWnv3YC2S_uzbwW7TDejNRhS7TymKoRINdfPkye1agK-mO-T5Of52Y_TT4uLrx_Xp6uLheYchkWOpBSVLoQieQ48YwS1IrwuKVakFgYqMAIAjaGVMBQRTV6qUueFECVRmp4kr_e6feOCnH0IMhNCMFbmQkRivSeMU1vZe9sqfy2dsvIm4PxGKj9Y3aAsWJZnQjPNs4LluqrqOjqWsYwYo2lBotaHudpYtWg0dtGY5kD08Kezv-TG7WRZAhEljwJvZwHvfo8YBtnaoLFpoq1uvOkbKKUcplpv_kEfnm6mNioOYLvaxbp6EpWr2DuNQmzSWj5AxWOwtdp1WNsYP0h4d5AQmQGvho0aQ5Dr75f_wX45ZNme1d6F4LG-8w6InFb5dkg5rbKcVzmmvbrv-13S7e7Sv8HR7jY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777449577</pqid></control><display><type>article</type><title>African swine fever virus transmembrane protein pEP84R guides core assembly</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Alejo, Alí ; García-Castey, Mayte ; Guerra, Milagros ; Hernáez, Bruno ; Martín, Verónica ; Matamoros, Tania ; Andrés, Germán</creator><creatorcontrib>Alejo, Alí ; García-Castey, Mayte ; Guerra, Milagros ; Hernáez, Bruno ; Martín, Verónica ; Matamoros, Tania ; Andrés, Germán</creatorcontrib><description>African swine fever virus (ASFV) causes a devastating hemorrhagic disease with worldwide circulation and no widely available therapeutic prevention. The infectious particle has a multilayered architecture that is articulated upon an endoplasmic reticulum (ER)-derived inner envelope. This membrane acts as docking platform for the assembly of the outer icosahedral capsid and the underlying core shell, a bridging layer required for the formation of the central genome-containing nucleoid. While the details of outer capsid assembly are relatively well understood, those of core formation remain unclear. Here we report the functional characterization of pEP84R, a transmembrane polypeptide embedded in the inner envelope that surrounds the viral core. Using an ASFV recombinant inducibly expressing the EP84R gene, we show that absence of pEP84R results in the formation of non-infectious core-less icosahedral particles displaying a significant DNA-packaging defect. Concomitantly, aberrant core shell-like structures formed by co-assembly of viral polyproteins pp220 and pp62 are mistargeted to non-ER membranes, as also occurs when these are co-expressed in the absence of other viral proteins. Interestingly, co-expression of both polyproteins with pEP84R led to the formation of ER-targeted core shell-like assemblies and co-immunoprecipitation assays showed that pEP84R binds to the N-terminal region of pp220. Altogether, these results indicate that pEP84R plays a crucial role in core assembly by targeting the core shell polyproteins to the inner viral envelope, which enables subsequent genome packaging and nucleoid formation. These findings unveil a key regulatory mechanism for ASFV morphogenesis and identify a relevant novel target for the development of therapeutic tools against this re-emerging threat.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1011136</identifier><identifier>PMID: 36716344</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>African Swine Fever ; African Swine Fever Virus - genetics ; African Swine Fever Virus - metabolism ; Animals ; Antibodies ; Asfarviridae ; Assembly ; Biology and Life Sciences ; Care and treatment ; Deoxyribonucleic acid ; Development and progression ; DNA ; Endoplasmic reticulum ; Factories ; Fever ; Genetic aspects ; Genomes ; Genomics ; Health aspects ; Hemorrhagic disease ; Hog cholera ; Hogs ; Identification and classification ; Immunoprecipitation ; Kinases ; Lipids ; Localization ; Medicine and Health Sciences ; Membrane Proteins ; Membranes ; Morphogenesis ; Packaging ; Polypeptides ; Polyproteins ; Polyproteins - metabolism ; Proteins ; Regulatory mechanisms (biology) ; Reptiles &amp; amphibians ; Research and Analysis Methods ; Swine ; Transmembrane proteins ; Viral proteins ; Viral Proteins - genetics ; Viral Proteins - metabolism ; Virus Assembly ; Viruses</subject><ispartof>PLoS pathogens, 2023-01, Vol.19 (1), p.e1011136-e1011136</ispartof><rights>Copyright: © 2023 Alejo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Alejo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Alejo et al 2023 Alejo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-5e097bc87a05516240eca06f93eb0f7d1b1d711edd3b7d3eeed59a9c587790ac3</citedby><cites>FETCH-LOGICAL-c661t-5e097bc87a05516240eca06f93eb0f7d1b1d711edd3b7d3eeed59a9c587790ac3</cites><orcidid>0000-0003-0265-5409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910796/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910796/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36716344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alejo, Alí</creatorcontrib><creatorcontrib>García-Castey, Mayte</creatorcontrib><creatorcontrib>Guerra, Milagros</creatorcontrib><creatorcontrib>Hernáez, Bruno</creatorcontrib><creatorcontrib>Martín, Verónica</creatorcontrib><creatorcontrib>Matamoros, Tania</creatorcontrib><creatorcontrib>Andrés, Germán</creatorcontrib><title>African swine fever virus transmembrane protein pEP84R guides core assembly</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>African swine fever virus (ASFV) causes a devastating hemorrhagic disease with worldwide circulation and no widely available therapeutic prevention. The infectious particle has a multilayered architecture that is articulated upon an endoplasmic reticulum (ER)-derived inner envelope. This membrane acts as docking platform for the assembly of the outer icosahedral capsid and the underlying core shell, a bridging layer required for the formation of the central genome-containing nucleoid. While the details of outer capsid assembly are relatively well understood, those of core formation remain unclear. Here we report the functional characterization of pEP84R, a transmembrane polypeptide embedded in the inner envelope that surrounds the viral core. Using an ASFV recombinant inducibly expressing the EP84R gene, we show that absence of pEP84R results in the formation of non-infectious core-less icosahedral particles displaying a significant DNA-packaging defect. Concomitantly, aberrant core shell-like structures formed by co-assembly of viral polyproteins pp220 and pp62 are mistargeted to non-ER membranes, as also occurs when these are co-expressed in the absence of other viral proteins. Interestingly, co-expression of both polyproteins with pEP84R led to the formation of ER-targeted core shell-like assemblies and co-immunoprecipitation assays showed that pEP84R binds to the N-terminal region of pp220. Altogether, these results indicate that pEP84R plays a crucial role in core assembly by targeting the core shell polyproteins to the inner viral envelope, which enables subsequent genome packaging and nucleoid formation. These findings unveil a key regulatory mechanism for ASFV morphogenesis and identify a relevant novel target for the development of therapeutic tools against this re-emerging threat.</description><subject>African Swine Fever</subject><subject>African Swine Fever Virus - genetics</subject><subject>African Swine Fever Virus - metabolism</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Asfarviridae</subject><subject>Assembly</subject><subject>Biology and Life Sciences</subject><subject>Care and treatment</subject><subject>Deoxyribonucleic acid</subject><subject>Development and progression</subject><subject>DNA</subject><subject>Endoplasmic reticulum</subject><subject>Factories</subject><subject>Fever</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Hemorrhagic disease</subject><subject>Hog cholera</subject><subject>Hogs</subject><subject>Identification and classification</subject><subject>Immunoprecipitation</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Localization</subject><subject>Medicine and Health Sciences</subject><subject>Membrane Proteins</subject><subject>Membranes</subject><subject>Morphogenesis</subject><subject>Packaging</subject><subject>Polypeptides</subject><subject>Polyproteins</subject><subject>Polyproteins - metabolism</subject><subject>Proteins</subject><subject>Regulatory mechanisms (biology)</subject><subject>Reptiles &amp; amphibians</subject><subject>Research and Analysis Methods</subject><subject>Swine</subject><subject>Transmembrane proteins</subject><subject>Viral proteins</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><subject>Virus Assembly</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVksFu1DAQhiMEoqXwBggicYHDLp7YsZML0qpqYUUFqMDZcuzJ4lUSBztZ2rfH6aZVF_WCfLA1_uafmV-TJC-BLIEKeL91o-9Us-x7NSyBAADlj5JjyHO6EFSwx_feR8mzELaEMKDAnyZHlAvglLHj5POq9larLg1_bIdpjTv06c76MaSDV11osa3ijWnv3YC2S_uzbwW7TDejNRhS7TymKoRINdfPkye1agK-mO-T5Of52Y_TT4uLrx_Xp6uLheYchkWOpBSVLoQieQ48YwS1IrwuKVakFgYqMAIAjaGVMBQRTV6qUueFECVRmp4kr_e6feOCnH0IMhNCMFbmQkRivSeMU1vZe9sqfy2dsvIm4PxGKj9Y3aAsWJZnQjPNs4LluqrqOjqWsYwYo2lBotaHudpYtWg0dtGY5kD08Kezv-TG7WRZAhEljwJvZwHvfo8YBtnaoLFpoq1uvOkbKKUcplpv_kEfnm6mNioOYLvaxbp6EpWr2DuNQmzSWj5AxWOwtdp1WNsYP0h4d5AQmQGvho0aQ5Dr75f_wX45ZNme1d6F4LG-8w6InFb5dkg5rbKcVzmmvbrv-13S7e7Sv8HR7jY</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Alejo, Alí</creator><creator>García-Castey, Mayte</creator><creator>Guerra, Milagros</creator><creator>Hernáez, Bruno</creator><creator>Martín, Verónica</creator><creator>Matamoros, Tania</creator><creator>Andrés, Germán</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0265-5409</orcidid></search><sort><creationdate>20230101</creationdate><title>African swine fever virus transmembrane protein pEP84R guides core assembly</title><author>Alejo, Alí ; García-Castey, Mayte ; Guerra, Milagros ; Hernáez, Bruno ; Martín, Verónica ; Matamoros, Tania ; Andrés, Germán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-5e097bc87a05516240eca06f93eb0f7d1b1d711edd3b7d3eeed59a9c587790ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>African Swine Fever</topic><topic>African Swine Fever Virus - genetics</topic><topic>African Swine Fever Virus - metabolism</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Asfarviridae</topic><topic>Assembly</topic><topic>Biology and Life Sciences</topic><topic>Care and treatment</topic><topic>Deoxyribonucleic acid</topic><topic>Development and progression</topic><topic>DNA</topic><topic>Endoplasmic reticulum</topic><topic>Factories</topic><topic>Fever</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Hemorrhagic disease</topic><topic>Hog cholera</topic><topic>Hogs</topic><topic>Identification and classification</topic><topic>Immunoprecipitation</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Localization</topic><topic>Medicine and Health Sciences</topic><topic>Membrane Proteins</topic><topic>Membranes</topic><topic>Morphogenesis</topic><topic>Packaging</topic><topic>Polypeptides</topic><topic>Polyproteins</topic><topic>Polyproteins - metabolism</topic><topic>Proteins</topic><topic>Regulatory mechanisms (biology)</topic><topic>Reptiles &amp; amphibians</topic><topic>Research and Analysis Methods</topic><topic>Swine</topic><topic>Transmembrane proteins</topic><topic>Viral proteins</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><topic>Virus Assembly</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alejo, Alí</creatorcontrib><creatorcontrib>García-Castey, Mayte</creatorcontrib><creatorcontrib>Guerra, Milagros</creatorcontrib><creatorcontrib>Hernáez, Bruno</creatorcontrib><creatorcontrib>Martín, Verónica</creatorcontrib><creatorcontrib>Matamoros, Tania</creatorcontrib><creatorcontrib>Andrés, Germán</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alejo, Alí</au><au>García-Castey, Mayte</au><au>Guerra, Milagros</au><au>Hernáez, Bruno</au><au>Martín, Verónica</au><au>Matamoros, Tania</au><au>Andrés, Germán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>African swine fever virus transmembrane protein pEP84R guides core assembly</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>e1011136</spage><epage>e1011136</epage><pages>e1011136-e1011136</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>African swine fever virus (ASFV) causes a devastating hemorrhagic disease with worldwide circulation and no widely available therapeutic prevention. The infectious particle has a multilayered architecture that is articulated upon an endoplasmic reticulum (ER)-derived inner envelope. This membrane acts as docking platform for the assembly of the outer icosahedral capsid and the underlying core shell, a bridging layer required for the formation of the central genome-containing nucleoid. While the details of outer capsid assembly are relatively well understood, those of core formation remain unclear. Here we report the functional characterization of pEP84R, a transmembrane polypeptide embedded in the inner envelope that surrounds the viral core. Using an ASFV recombinant inducibly expressing the EP84R gene, we show that absence of pEP84R results in the formation of non-infectious core-less icosahedral particles displaying a significant DNA-packaging defect. Concomitantly, aberrant core shell-like structures formed by co-assembly of viral polyproteins pp220 and pp62 are mistargeted to non-ER membranes, as also occurs when these are co-expressed in the absence of other viral proteins. Interestingly, co-expression of both polyproteins with pEP84R led to the formation of ER-targeted core shell-like assemblies and co-immunoprecipitation assays showed that pEP84R binds to the N-terminal region of pp220. Altogether, these results indicate that pEP84R plays a crucial role in core assembly by targeting the core shell polyproteins to the inner viral envelope, which enables subsequent genome packaging and nucleoid formation. These findings unveil a key regulatory mechanism for ASFV morphogenesis and identify a relevant novel target for the development of therapeutic tools against this re-emerging threat.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36716344</pmid><doi>10.1371/journal.ppat.1011136</doi><tpages>e1011136</tpages><orcidid>https://orcid.org/0000-0003-0265-5409</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2023-01, Vol.19 (1), p.e1011136-e1011136
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2777449577
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects African Swine Fever
African Swine Fever Virus - genetics
African Swine Fever Virus - metabolism
Animals
Antibodies
Asfarviridae
Assembly
Biology and Life Sciences
Care and treatment
Deoxyribonucleic acid
Development and progression
DNA
Endoplasmic reticulum
Factories
Fever
Genetic aspects
Genomes
Genomics
Health aspects
Hemorrhagic disease
Hog cholera
Hogs
Identification and classification
Immunoprecipitation
Kinases
Lipids
Localization
Medicine and Health Sciences
Membrane Proteins
Membranes
Morphogenesis
Packaging
Polypeptides
Polyproteins
Polyproteins - metabolism
Proteins
Regulatory mechanisms (biology)
Reptiles & amphibians
Research and Analysis Methods
Swine
Transmembrane proteins
Viral proteins
Viral Proteins - genetics
Viral Proteins - metabolism
Virus Assembly
Viruses
title African swine fever virus transmembrane protein pEP84R guides core assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=African%20swine%20fever%20virus%20transmembrane%20protein%20pEP84R%20guides%20core%20assembly&rft.jtitle=PLoS%20pathogens&rft.au=Alejo,%20Al%C3%AD&rft.date=2023-01-01&rft.volume=19&rft.issue=1&rft.spage=e1011136&rft.epage=e1011136&rft.pages=e1011136-e1011136&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1011136&rft_dat=%3Cgale_plos_%3EA737310340%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777449577&rft_id=info:pmid/36716344&rft_galeid=A737310340&rft_doaj_id=oai_doaj_org_article_842527c4c62845cbbff7372420ddc380&rfr_iscdi=true