Consumer preference analysis on the attributes of samgyeopsal Korean cuisine and its market segmentation: Integrating conjoint analysis and K-means clustering

Samgyeopsal is a popular Korean grilled dish with increasing recognition in the Philippines as a result of the Hallyu. The aim of this study was to analyze the preferability of Samgyeopsal attributes which includes the main entree, cheese inclusion, cooking style, price, brand, and drinks using Conj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-02, Vol.18 (2), p.e0281948-e0281948
Hauptverfasser: Ong, Ardvin Kester S, Prasetyo, Yogi Tri, Esteller, Armand Joseph D, Bruno, Jarod E, Lagorza, Kathryn Cheska O, Oli, Lance Edward T, Chuenyindee, Thanatorn, Thana, Kriengkrai, Persada, Satria Fadil, Nadlifatin, Reny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0281948
container_issue 2
container_start_page e0281948
container_title PloS one
container_volume 18
creator Ong, Ardvin Kester S
Prasetyo, Yogi Tri
Esteller, Armand Joseph D
Bruno, Jarod E
Lagorza, Kathryn Cheska O
Oli, Lance Edward T
Chuenyindee, Thanatorn
Thana, Kriengkrai
Persada, Satria Fadil
Nadlifatin, Reny
description Samgyeopsal is a popular Korean grilled dish with increasing recognition in the Philippines as a result of the Hallyu. The aim of this study was to analyze the preferability of Samgyeopsal attributes which includes the main entree, cheese inclusion, cooking style, price, brand, and drinks using Conjoint Analysis and market segmentation using k-means clustering. A total of 1018 responses were collected online through social media platforms by utilizing a convenience sampling approach. The results showed that the main entrée (46.314%) was found to be the most important attribute, followed by cheese (33.087%), price (9.361%), drinks (6.603%), and style (3.349%). In addition, k-means clustering identified 3 different market segments: high-value, core, and low-value consumers. Furthermore, this study formulated a marketing strategy that focused on enhancing the choice of meat, cheese, and price based on these 3 market segments. This study has significant implications for enhancing Samgyeopsal chain businesses and helping entrepreneurs with consumer preference on Samgyeopsal attributes. Finally, conjoint analysis with k-means clustering can be utilized and extended for evaluating food preferences worldwide.
doi_str_mv 10.1371/journal.pone.0281948
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2777358812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1e9fbd2979c24856bb17a2bed1f93755</doaj_id><sourcerecordid>2777358812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-77d76c3cb232398fa96bab24fed547b2c6e810044e03b0f4f7118e5915931d673</originalsourceid><addsrcrecordid>eNptUsuO1DAQjBCIXRb-AIElLlwyxI_EMQckNOIx2pW4wNmynU7WQ2IPtoM0P8O34jDZZRdxst2uqu5qVVE8x9UGU47f7P0cnBo3B-9gU5EWC9Y-KM6xoKRsSEUf3rmfFU9i3FdVTdumeVyc0YaLmuP2vPi19S7OEwR0CNBDAGcAqax7jDYi71C6zu-UgtVzglzpUVTTcAR_iGpElz6AcsjMNlq3EDtkU0STCt8hoQjDBC6pZL17i3YuwRDyww3IeLf31qW_rRbqZTlltYjMOMcEIQOfFo96NUZ4tp4XxbePH75uP5dXXz7ttu-vSsPqJpWcd7wx1GhCCRVtr0SjlSash65mXBPTQIurijGoqK561nOMW6gFrgXFXcPpRfHypHsYfZTraqMknHNaty0mGbE7ITqv9vIQbPZ4lF5Z-afgwyBVSNaMIDGIXndEcGEIa-tGa8wV0dDhXlBe11nr3dpt1hN0Ju8oqPGe6P0fZ6_l4H9KISijdBnm9SoQ_I8ZYpKTjQbGUTnw82lulu1SnKGv_oH-3x07oUzwMeYk3A6DK7nE7YYll7jJNW6Z9uKukVvSTb7obzLG12k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777358812</pqid></control><display><type>article</type><title>Consumer preference analysis on the attributes of samgyeopsal Korean cuisine and its market segmentation: Integrating conjoint analysis and K-means clustering</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ong, Ardvin Kester S ; Prasetyo, Yogi Tri ; Esteller, Armand Joseph D ; Bruno, Jarod E ; Lagorza, Kathryn Cheska O ; Oli, Lance Edward T ; Chuenyindee, Thanatorn ; Thana, Kriengkrai ; Persada, Satria Fadil ; Nadlifatin, Reny</creator><contributor>Al-Mahish, Mohammed</contributor><creatorcontrib>Ong, Ardvin Kester S ; Prasetyo, Yogi Tri ; Esteller, Armand Joseph D ; Bruno, Jarod E ; Lagorza, Kathryn Cheska O ; Oli, Lance Edward T ; Chuenyindee, Thanatorn ; Thana, Kriengkrai ; Persada, Satria Fadil ; Nadlifatin, Reny ; Al-Mahish, Mohammed</creatorcontrib><description>Samgyeopsal is a popular Korean grilled dish with increasing recognition in the Philippines as a result of the Hallyu. The aim of this study was to analyze the preferability of Samgyeopsal attributes which includes the main entree, cheese inclusion, cooking style, price, brand, and drinks using Conjoint Analysis and market segmentation using k-means clustering. A total of 1018 responses were collected online through social media platforms by utilizing a convenience sampling approach. The results showed that the main entrée (46.314%) was found to be the most important attribute, followed by cheese (33.087%), price (9.361%), drinks (6.603%), and style (3.349%). In addition, k-means clustering identified 3 different market segments: high-value, core, and low-value consumers. Furthermore, this study formulated a marketing strategy that focused on enhancing the choice of meat, cheese, and price based on these 3 market segments. This study has significant implications for enhancing Samgyeopsal chain businesses and helping entrepreneurs with consumer preference on Samgyeopsal attributes. Finally, conjoint analysis with k-means clustering can be utilized and extended for evaluating food preferences worldwide.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0281948</identifier><identifier>PMID: 36795718</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Beverages ; Biology and Life Sciences ; Cheese ; Cluster Analysis ; Clustering ; Conjoint analysis ; Consumer Behavior ; Consumers ; Cooking ; Coronaviruses ; COVID-19 ; Customers ; Dairy products ; Food ; Food Preferences ; Humans ; Machine learning ; Market segmentation ; Market segments ; Marketing ; Markets ; Medical research ; Medicine and Health Sciences ; Milk ; Nutrition ; Pandemics ; People and Places ; Popularity ; Preference analysis ; Preferences ; Republic of Korea ; Research and Analysis Methods ; Restaurants ; Segmentation ; Segments ; Taste ; Vector quantization</subject><ispartof>PloS one, 2023-02, Vol.18 (2), p.e0281948-e0281948</ispartof><rights>Copyright: © 2023 Ong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2023 Ong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Ong et al 2023 Ong et al</rights><rights>2023 Ong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-77d76c3cb232398fa96bab24fed547b2c6e810044e03b0f4f7118e5915931d673</citedby><cites>FETCH-LOGICAL-c456t-77d76c3cb232398fa96bab24fed547b2c6e810044e03b0f4f7118e5915931d673</cites><orcidid>0000-0001-9284-9826 ; 0000-0003-3535-9657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934332/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934332/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2097,2916,23848,27906,27907,53773,53775,79350,79351</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36795718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Al-Mahish, Mohammed</contributor><creatorcontrib>Ong, Ardvin Kester S</creatorcontrib><creatorcontrib>Prasetyo, Yogi Tri</creatorcontrib><creatorcontrib>Esteller, Armand Joseph D</creatorcontrib><creatorcontrib>Bruno, Jarod E</creatorcontrib><creatorcontrib>Lagorza, Kathryn Cheska O</creatorcontrib><creatorcontrib>Oli, Lance Edward T</creatorcontrib><creatorcontrib>Chuenyindee, Thanatorn</creatorcontrib><creatorcontrib>Thana, Kriengkrai</creatorcontrib><creatorcontrib>Persada, Satria Fadil</creatorcontrib><creatorcontrib>Nadlifatin, Reny</creatorcontrib><title>Consumer preference analysis on the attributes of samgyeopsal Korean cuisine and its market segmentation: Integrating conjoint analysis and K-means clustering</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Samgyeopsal is a popular Korean grilled dish with increasing recognition in the Philippines as a result of the Hallyu. The aim of this study was to analyze the preferability of Samgyeopsal attributes which includes the main entree, cheese inclusion, cooking style, price, brand, and drinks using Conjoint Analysis and market segmentation using k-means clustering. A total of 1018 responses were collected online through social media platforms by utilizing a convenience sampling approach. The results showed that the main entrée (46.314%) was found to be the most important attribute, followed by cheese (33.087%), price (9.361%), drinks (6.603%), and style (3.349%). In addition, k-means clustering identified 3 different market segments: high-value, core, and low-value consumers. Furthermore, this study formulated a marketing strategy that focused on enhancing the choice of meat, cheese, and price based on these 3 market segments. This study has significant implications for enhancing Samgyeopsal chain businesses and helping entrepreneurs with consumer preference on Samgyeopsal attributes. Finally, conjoint analysis with k-means clustering can be utilized and extended for evaluating food preferences worldwide.</description><subject>Algorithms</subject><subject>Beverages</subject><subject>Biology and Life Sciences</subject><subject>Cheese</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Conjoint analysis</subject><subject>Consumer Behavior</subject><subject>Consumers</subject><subject>Cooking</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Customers</subject><subject>Dairy products</subject><subject>Food</subject><subject>Food Preferences</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Market segmentation</subject><subject>Market segments</subject><subject>Marketing</subject><subject>Markets</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Milk</subject><subject>Nutrition</subject><subject>Pandemics</subject><subject>People and Places</subject><subject>Popularity</subject><subject>Preference analysis</subject><subject>Preferences</subject><subject>Republic of Korea</subject><subject>Research and Analysis Methods</subject><subject>Restaurants</subject><subject>Segmentation</subject><subject>Segments</subject><subject>Taste</subject><subject>Vector quantization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUsuO1DAQjBCIXRb-AIElLlwyxI_EMQckNOIx2pW4wNmynU7WQ2IPtoM0P8O34jDZZRdxst2uqu5qVVE8x9UGU47f7P0cnBo3B-9gU5EWC9Y-KM6xoKRsSEUf3rmfFU9i3FdVTdumeVyc0YaLmuP2vPi19S7OEwR0CNBDAGcAqax7jDYi71C6zu-UgtVzglzpUVTTcAR_iGpElz6AcsjMNlq3EDtkU0STCt8hoQjDBC6pZL17i3YuwRDyww3IeLf31qW_rRbqZTlltYjMOMcEIQOfFo96NUZ4tp4XxbePH75uP5dXXz7ttu-vSsPqJpWcd7wx1GhCCRVtr0SjlSash65mXBPTQIurijGoqK561nOMW6gFrgXFXcPpRfHypHsYfZTraqMknHNaty0mGbE7ITqv9vIQbPZ4lF5Z-afgwyBVSNaMIDGIXndEcGEIa-tGa8wV0dDhXlBe11nr3dpt1hN0Ju8oqPGe6P0fZ6_l4H9KISijdBnm9SoQ_I8ZYpKTjQbGUTnw82lulu1SnKGv_oH-3x07oUzwMeYk3A6DK7nE7YYll7jJNW6Z9uKukVvSTb7obzLG12k</recordid><startdate>20230216</startdate><enddate>20230216</enddate><creator>Ong, Ardvin Kester S</creator><creator>Prasetyo, Yogi Tri</creator><creator>Esteller, Armand Joseph D</creator><creator>Bruno, Jarod E</creator><creator>Lagorza, Kathryn Cheska O</creator><creator>Oli, Lance Edward T</creator><creator>Chuenyindee, Thanatorn</creator><creator>Thana, Kriengkrai</creator><creator>Persada, Satria Fadil</creator><creator>Nadlifatin, Reny</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9284-9826</orcidid><orcidid>https://orcid.org/0000-0003-3535-9657</orcidid></search><sort><creationdate>20230216</creationdate><title>Consumer preference analysis on the attributes of samgyeopsal Korean cuisine and its market segmentation: Integrating conjoint analysis and K-means clustering</title><author>Ong, Ardvin Kester S ; Prasetyo, Yogi Tri ; Esteller, Armand Joseph D ; Bruno, Jarod E ; Lagorza, Kathryn Cheska O ; Oli, Lance Edward T ; Chuenyindee, Thanatorn ; Thana, Kriengkrai ; Persada, Satria Fadil ; Nadlifatin, Reny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-77d76c3cb232398fa96bab24fed547b2c6e810044e03b0f4f7118e5915931d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Beverages</topic><topic>Biology and Life Sciences</topic><topic>Cheese</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Conjoint analysis</topic><topic>Consumer Behavior</topic><topic>Consumers</topic><topic>Cooking</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Customers</topic><topic>Dairy products</topic><topic>Food</topic><topic>Food Preferences</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Market segmentation</topic><topic>Market segments</topic><topic>Marketing</topic><topic>Markets</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Milk</topic><topic>Nutrition</topic><topic>Pandemics</topic><topic>People and Places</topic><topic>Popularity</topic><topic>Preference analysis</topic><topic>Preferences</topic><topic>Republic of Korea</topic><topic>Research and Analysis Methods</topic><topic>Restaurants</topic><topic>Segmentation</topic><topic>Segments</topic><topic>Taste</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, Ardvin Kester S</creatorcontrib><creatorcontrib>Prasetyo, Yogi Tri</creatorcontrib><creatorcontrib>Esteller, Armand Joseph D</creatorcontrib><creatorcontrib>Bruno, Jarod E</creatorcontrib><creatorcontrib>Lagorza, Kathryn Cheska O</creatorcontrib><creatorcontrib>Oli, Lance Edward T</creatorcontrib><creatorcontrib>Chuenyindee, Thanatorn</creatorcontrib><creatorcontrib>Thana, Kriengkrai</creatorcontrib><creatorcontrib>Persada, Satria Fadil</creatorcontrib><creatorcontrib>Nadlifatin, Reny</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, Ardvin Kester S</au><au>Prasetyo, Yogi Tri</au><au>Esteller, Armand Joseph D</au><au>Bruno, Jarod E</au><au>Lagorza, Kathryn Cheska O</au><au>Oli, Lance Edward T</au><au>Chuenyindee, Thanatorn</au><au>Thana, Kriengkrai</au><au>Persada, Satria Fadil</au><au>Nadlifatin, Reny</au><au>Al-Mahish, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consumer preference analysis on the attributes of samgyeopsal Korean cuisine and its market segmentation: Integrating conjoint analysis and K-means clustering</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-02-16</date><risdate>2023</risdate><volume>18</volume><issue>2</issue><spage>e0281948</spage><epage>e0281948</epage><pages>e0281948-e0281948</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Samgyeopsal is a popular Korean grilled dish with increasing recognition in the Philippines as a result of the Hallyu. The aim of this study was to analyze the preferability of Samgyeopsal attributes which includes the main entree, cheese inclusion, cooking style, price, brand, and drinks using Conjoint Analysis and market segmentation using k-means clustering. A total of 1018 responses were collected online through social media platforms by utilizing a convenience sampling approach. The results showed that the main entrée (46.314%) was found to be the most important attribute, followed by cheese (33.087%), price (9.361%), drinks (6.603%), and style (3.349%). In addition, k-means clustering identified 3 different market segments: high-value, core, and low-value consumers. Furthermore, this study formulated a marketing strategy that focused on enhancing the choice of meat, cheese, and price based on these 3 market segments. This study has significant implications for enhancing Samgyeopsal chain businesses and helping entrepreneurs with consumer preference on Samgyeopsal attributes. Finally, conjoint analysis with k-means clustering can be utilized and extended for evaluating food preferences worldwide.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36795718</pmid><doi>10.1371/journal.pone.0281948</doi><orcidid>https://orcid.org/0000-0001-9284-9826</orcidid><orcidid>https://orcid.org/0000-0003-3535-9657</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-02, Vol.18 (2), p.e0281948-e0281948
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2777358812
source MEDLINE; PMC (PubMed Central); DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Algorithms
Beverages
Biology and Life Sciences
Cheese
Cluster Analysis
Clustering
Conjoint analysis
Consumer Behavior
Consumers
Cooking
Coronaviruses
COVID-19
Customers
Dairy products
Food
Food Preferences
Humans
Machine learning
Market segmentation
Market segments
Marketing
Markets
Medical research
Medicine and Health Sciences
Milk
Nutrition
Pandemics
People and Places
Popularity
Preference analysis
Preferences
Republic of Korea
Research and Analysis Methods
Restaurants
Segmentation
Segments
Taste
Vector quantization
title Consumer preference analysis on the attributes of samgyeopsal Korean cuisine and its market segmentation: Integrating conjoint analysis and K-means clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consumer%20preference%20analysis%20on%20the%20attributes%20of%20samgyeopsal%20Korean%20cuisine%20and%20its%20market%20segmentation:%20Integrating%20conjoint%20analysis%20and%20K-means%20clustering&rft.jtitle=PloS%20one&rft.au=Ong,%20Ardvin%20Kester%20S&rft.date=2023-02-16&rft.volume=18&rft.issue=2&rft.spage=e0281948&rft.epage=e0281948&rft.pages=e0281948-e0281948&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0281948&rft_dat=%3Cproquest_plos_%3E2777358812%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777358812&rft_id=info:pmid/36795718&rft_doaj_id=oai_doaj_org_article_1e9fbd2979c24856bb17a2bed1f93755&rfr_iscdi=true