Effect of body tissue composition on the outcome of patients with metastatic non-small cell lung cancer treated with PD-1/PD-L1 inhibitors
Obesity and sarcopenia have been reported to affect outcomes in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). We analyzed prospective data from 52 patients with non-oncogene driven metastatic NSCLC treated with ICIs. Body tissue composition was ca...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-02, Vol.18 (2), p.e0277708-e0277708 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0277708 |
---|---|
container_issue | 2 |
container_start_page | e0277708 |
container_title | PloS one |
container_volume | 18 |
creator | Makrakis, Dimitrios Rounis, Konstantinos Tsigkas, Alexandros-Pantelis Georgiou, Alexandra Galanakis, Nikolaos Tsakonas, George Ekman, Simon Papadaki, Chara Monastirioti, Alexia Kontogianni, Meropi Gioulbasanis, Ioannis Mavroudis, Dimitris Agelaki, Sofia |
description | Obesity and sarcopenia have been reported to affect outcomes in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). We analyzed prospective data from 52 patients with non-oncogene driven metastatic NSCLC treated with ICIs. Body tissue composition was calculated by measuring the fat and muscle densities at the level of 3rd lumbar vertebra in each patient computed tomography scan before ICI initiation using sliceOmatic tomovision. We converted the densities to indices [Intramuscular Fat Index (IMFI), Visceral Fat Index (VFI), Subcutaneous Fat Index (SFI), Lumbar Skeletal Muscle Index (LSMI)] by dividing them by height in meters squared. Patients were dichotomized based on their baseline IMFI, VFI and SFI according to their gender-specific median value. The cut-offs that were set for LMSI values were 55 cm2/m2 for males and 39 cm2/m2 for females. SFI distribution was significantly higher (p = 0.040) in responders compared to non-responders. None of the other variables affected response rates. Low LSMI HR: 2.90 (95% CI: 1.261-6.667, p = 0.012) and low SFI: 2.20 (95% CI: 1.114-4.333, p = 0.023) values predicted for inferior OS. VFI and IMFI values did not affect survival. Subcutaneous adipose and skeletal muscle tissue composition significantly affected immunotherapy outcomes in our cohort. |
doi_str_mv | 10.1371/journal.pone.0277708 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2775220374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A736558376</galeid><doaj_id>oai_doaj_org_article_b70a2b3772264cf5ae57cb9b6377d397</doaj_id><sourcerecordid>A736558376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c780t-6e5e5d2a3e57370eef0a9a94bb19107ac30e17cd14ab1930dd9abebb0a34dd6f3</originalsourceid><addsrcrecordid>eNqNk29r1TAUxosobk6_gWhBEH3Ru6Rpk9s3wphTB4OJ_96GNDm9N7NtuiR17iv4qT13t5urTJCWNpz-nqfJk5wkeUrJgjJB98_c6HvVLgbXw4LkQgiyvJfs0orlGc8Ju39rvJM8CuGMkJItOX-Y7DAuOCsrsZv8Omoa0DF1TVo7c5lGG8IIqXbd4IKN1vUp3nENqRsjVmFDDipa6GNIL2xcpx1EFSKWdNq7PgudattUAz7asV-lWvUafBo9qAhmK_n4NqP7-Dihqe3XtrbR-fA4edCoNsCT6b2XfH139OXwQ3Zy-v748OAk02JJYsahhNLkikEpmCAADVGVqoq6phUlQmlGgAptaKGwwogxlaqhrolihTG8YXvJ863v0LogpxiDxATLHLMSBRLHW8I4dSYHbzvlL6VTVl4VnF9J5XG9LchaEJXXTIg854VuSoWz0nVVcywZVgn0yrZe4QKGsZ65TaXvOAJZFGJZ5shX_-QH78wf0bWQ4rQrygVD7ZtpZWPdgdG4R161c4vZl96u5cr9kBXqOSVo8Goy8O58hBBlZ8NmK1UPbtxmxHNGr9b14i_07iQnaqUwLNs3Dv-rN6byQDBelkuGJ3EvWdxB4WWgsxrPd2OxPhO8ngmQifAzrtQYgjz-_On_2dNvc_blLXYNqo3r4Npx0wdhDhZbUHsXgofmJmRK5KY9r9OQm_aUU3ui7NntDboRXfcj-w3xYTgt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775220374</pqid></control><display><type>article</type><title>Effect of body tissue composition on the outcome of patients with metastatic non-small cell lung cancer treated with PD-1/PD-L1 inhibitors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Makrakis, Dimitrios ; Rounis, Konstantinos ; Tsigkas, Alexandros-Pantelis ; Georgiou, Alexandra ; Galanakis, Nikolaos ; Tsakonas, George ; Ekman, Simon ; Papadaki, Chara ; Monastirioti, Alexia ; Kontogianni, Meropi ; Gioulbasanis, Ioannis ; Mavroudis, Dimitris ; Agelaki, Sofia</creator><contributor>Bauckneht, Matteo</contributor><creatorcontrib>Makrakis, Dimitrios ; Rounis, Konstantinos ; Tsigkas, Alexandros-Pantelis ; Georgiou, Alexandra ; Galanakis, Nikolaos ; Tsakonas, George ; Ekman, Simon ; Papadaki, Chara ; Monastirioti, Alexia ; Kontogianni, Meropi ; Gioulbasanis, Ioannis ; Mavroudis, Dimitris ; Agelaki, Sofia ; Bauckneht, Matteo</creatorcontrib><description>Obesity and sarcopenia have been reported to affect outcomes in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). We analyzed prospective data from 52 patients with non-oncogene driven metastatic NSCLC treated with ICIs. Body tissue composition was calculated by measuring the fat and muscle densities at the level of 3rd lumbar vertebra in each patient computed tomography scan before ICI initiation using sliceOmatic tomovision. We converted the densities to indices [Intramuscular Fat Index (IMFI), Visceral Fat Index (VFI), Subcutaneous Fat Index (SFI), Lumbar Skeletal Muscle Index (LSMI)] by dividing them by height in meters squared. Patients were dichotomized based on their baseline IMFI, VFI and SFI according to their gender-specific median value. The cut-offs that were set for LMSI values were 55 cm2/m2 for males and 39 cm2/m2 for females. SFI distribution was significantly higher (p = 0.040) in responders compared to non-responders. None of the other variables affected response rates. Low LSMI HR: 2.90 (95% CI: 1.261-6.667, p = 0.012) and low SFI: 2.20 (95% CI: 1.114-4.333, p = 0.023) values predicted for inferior OS. VFI and IMFI values did not affect survival. Subcutaneous adipose and skeletal muscle tissue composition significantly affected immunotherapy outcomes in our cohort.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0277708</identifier><identifier>PMID: 36763597</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Biomarkers ; Body fat ; Body mass index ; Brain cancer ; Carcinoma, Non-Small-Cell Lung - pathology ; Care and treatment ; Complications and side effects ; Composition ; Computed tomography ; Data collection ; Diagnosis ; Disease control ; Female ; Gender ; Histology ; Humans ; Immune checkpoint inhibitors ; Immune Checkpoint Inhibitors - pharmacology ; Immune Checkpoint Inhibitors - therapeutic use ; Immunotherapy ; Inhibitors ; Ipilimumab ; Lung cancer ; Lung cancer, Non-small cell ; Lung cancer, Small cell ; Lung diseases ; Lung Neoplasms - pathology ; Male ; Measuring instruments ; Medicin och hälsovetenskap ; Medicine and Health Sciences ; Melanoma ; Metastases ; Metastasis ; Muscles ; Musculoskeletal system ; Non-small cell lung carcinoma ; Obesity ; Patient outcomes ; PD-1 protein ; PD-L1 protein ; Prognosis ; Programmed Cell Death 1 Receptor ; Prospective Studies ; Regression analysis ; Retrospective Studies ; Sarcopenia ; Skeletal muscle ; Small cell lung carcinoma ; Statistical significance ; Tissues ; Values ; Vertebrae</subject><ispartof>PloS one, 2023-02, Vol.18 (2), p.e0277708-e0277708</ispartof><rights>Copyright: © 2023 Makrakis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Makrakis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Makrakis et al 2023 Makrakis et al</rights><rights>2023 Makrakis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c780t-6e5e5d2a3e57370eef0a9a94bb19107ac30e17cd14ab1930dd9abebb0a34dd6f3</citedby><cites>FETCH-LOGICAL-c780t-6e5e5d2a3e57370eef0a9a94bb19107ac30e17cd14ab1930dd9abebb0a34dd6f3</cites><orcidid>0000-0002-4591-3757 ; 0000-0001-9878-6053 ; 0000-0003-3258-2984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916610/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916610/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36763597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:152291673$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Bauckneht, Matteo</contributor><creatorcontrib>Makrakis, Dimitrios</creatorcontrib><creatorcontrib>Rounis, Konstantinos</creatorcontrib><creatorcontrib>Tsigkas, Alexandros-Pantelis</creatorcontrib><creatorcontrib>Georgiou, Alexandra</creatorcontrib><creatorcontrib>Galanakis, Nikolaos</creatorcontrib><creatorcontrib>Tsakonas, George</creatorcontrib><creatorcontrib>Ekman, Simon</creatorcontrib><creatorcontrib>Papadaki, Chara</creatorcontrib><creatorcontrib>Monastirioti, Alexia</creatorcontrib><creatorcontrib>Kontogianni, Meropi</creatorcontrib><creatorcontrib>Gioulbasanis, Ioannis</creatorcontrib><creatorcontrib>Mavroudis, Dimitris</creatorcontrib><creatorcontrib>Agelaki, Sofia</creatorcontrib><title>Effect of body tissue composition on the outcome of patients with metastatic non-small cell lung cancer treated with PD-1/PD-L1 inhibitors</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Obesity and sarcopenia have been reported to affect outcomes in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). We analyzed prospective data from 52 patients with non-oncogene driven metastatic NSCLC treated with ICIs. Body tissue composition was calculated by measuring the fat and muscle densities at the level of 3rd lumbar vertebra in each patient computed tomography scan before ICI initiation using sliceOmatic tomovision. We converted the densities to indices [Intramuscular Fat Index (IMFI), Visceral Fat Index (VFI), Subcutaneous Fat Index (SFI), Lumbar Skeletal Muscle Index (LSMI)] by dividing them by height in meters squared. Patients were dichotomized based on their baseline IMFI, VFI and SFI according to their gender-specific median value. The cut-offs that were set for LMSI values were 55 cm2/m2 for males and 39 cm2/m2 for females. SFI distribution was significantly higher (p = 0.040) in responders compared to non-responders. None of the other variables affected response rates. Low LSMI HR: 2.90 (95% CI: 1.261-6.667, p = 0.012) and low SFI: 2.20 (95% CI: 1.114-4.333, p = 0.023) values predicted for inferior OS. VFI and IMFI values did not affect survival. Subcutaneous adipose and skeletal muscle tissue composition significantly affected immunotherapy outcomes in our cohort.</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Body fat</subject><subject>Body mass index</subject><subject>Brain cancer</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Care and treatment</subject><subject>Complications and side effects</subject><subject>Composition</subject><subject>Computed tomography</subject><subject>Data collection</subject><subject>Diagnosis</subject><subject>Disease control</subject><subject>Female</subject><subject>Gender</subject><subject>Histology</subject><subject>Humans</subject><subject>Immune checkpoint inhibitors</subject><subject>Immune Checkpoint Inhibitors - pharmacology</subject><subject>Immune Checkpoint Inhibitors - therapeutic use</subject><subject>Immunotherapy</subject><subject>Inhibitors</subject><subject>Ipilimumab</subject><subject>Lung cancer</subject><subject>Lung cancer, Non-small cell</subject><subject>Lung cancer, Small cell</subject><subject>Lung diseases</subject><subject>Lung Neoplasms - pathology</subject><subject>Male</subject><subject>Measuring instruments</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicine and Health Sciences</subject><subject>Melanoma</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Non-small cell lung carcinoma</subject><subject>Obesity</subject><subject>Patient outcomes</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Prognosis</subject><subject>Programmed Cell Death 1 Receptor</subject><subject>Prospective Studies</subject><subject>Regression analysis</subject><subject>Retrospective Studies</subject><subject>Sarcopenia</subject><subject>Skeletal muscle</subject><subject>Small cell lung carcinoma</subject><subject>Statistical significance</subject><subject>Tissues</subject><subject>Values</subject><subject>Vertebrae</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk29r1TAUxosobk6_gWhBEH3Ru6Rpk9s3wphTB4OJ_96GNDm9N7NtuiR17iv4qT13t5urTJCWNpz-nqfJk5wkeUrJgjJB98_c6HvVLgbXw4LkQgiyvJfs0orlGc8Ju39rvJM8CuGMkJItOX-Y7DAuOCsrsZv8Omoa0DF1TVo7c5lGG8IIqXbd4IKN1vUp3nENqRsjVmFDDipa6GNIL2xcpx1EFSKWdNq7PgudattUAz7asV-lWvUafBo9qAhmK_n4NqP7-Dihqe3XtrbR-fA4edCoNsCT6b2XfH139OXwQ3Zy-v748OAk02JJYsahhNLkikEpmCAADVGVqoq6phUlQmlGgAptaKGwwogxlaqhrolihTG8YXvJ863v0LogpxiDxATLHLMSBRLHW8I4dSYHbzvlL6VTVl4VnF9J5XG9LchaEJXXTIg854VuSoWz0nVVcywZVgn0yrZe4QKGsZ65TaXvOAJZFGJZ5shX_-QH78wf0bWQ4rQrygVD7ZtpZWPdgdG4R161c4vZl96u5cr9kBXqOSVo8Goy8O58hBBlZ8NmK1UPbtxmxHNGr9b14i_07iQnaqUwLNs3Dv-rN6byQDBelkuGJ3EvWdxB4WWgsxrPd2OxPhO8ngmQifAzrtQYgjz-_On_2dNvc_blLXYNqo3r4Npx0wdhDhZbUHsXgofmJmRK5KY9r9OQm_aUU3ui7NntDboRXfcj-w3xYTgt</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>Makrakis, Dimitrios</creator><creator>Rounis, Konstantinos</creator><creator>Tsigkas, Alexandros-Pantelis</creator><creator>Georgiou, Alexandra</creator><creator>Galanakis, Nikolaos</creator><creator>Tsakonas, George</creator><creator>Ekman, Simon</creator><creator>Papadaki, Chara</creator><creator>Monastirioti, Alexia</creator><creator>Kontogianni, Meropi</creator><creator>Gioulbasanis, Ioannis</creator><creator>Mavroudis, Dimitris</creator><creator>Agelaki, Sofia</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4591-3757</orcidid><orcidid>https://orcid.org/0000-0001-9878-6053</orcidid><orcidid>https://orcid.org/0000-0003-3258-2984</orcidid></search><sort><creationdate>20230210</creationdate><title>Effect of body tissue composition on the outcome of patients with metastatic non-small cell lung cancer treated with PD-1/PD-L1 inhibitors</title><author>Makrakis, Dimitrios ; Rounis, Konstantinos ; Tsigkas, Alexandros-Pantelis ; Georgiou, Alexandra ; Galanakis, Nikolaos ; Tsakonas, George ; Ekman, Simon ; Papadaki, Chara ; Monastirioti, Alexia ; Kontogianni, Meropi ; Gioulbasanis, Ioannis ; Mavroudis, Dimitris ; Agelaki, Sofia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c780t-6e5e5d2a3e57370eef0a9a94bb19107ac30e17cd14ab1930dd9abebb0a34dd6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Body fat</topic><topic>Body mass index</topic><topic>Brain cancer</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Care and treatment</topic><topic>Complications and side effects</topic><topic>Composition</topic><topic>Computed tomography</topic><topic>Data collection</topic><topic>Diagnosis</topic><topic>Disease control</topic><topic>Female</topic><topic>Gender</topic><topic>Histology</topic><topic>Humans</topic><topic>Immune checkpoint inhibitors</topic><topic>Immune Checkpoint Inhibitors - pharmacology</topic><topic>Immune Checkpoint Inhibitors - therapeutic use</topic><topic>Immunotherapy</topic><topic>Inhibitors</topic><topic>Ipilimumab</topic><topic>Lung cancer</topic><topic>Lung cancer, Non-small cell</topic><topic>Lung cancer, Small cell</topic><topic>Lung diseases</topic><topic>Lung Neoplasms - pathology</topic><topic>Male</topic><topic>Measuring instruments</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicine and Health Sciences</topic><topic>Melanoma</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Non-small cell lung carcinoma</topic><topic>Obesity</topic><topic>Patient outcomes</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Prognosis</topic><topic>Programmed Cell Death 1 Receptor</topic><topic>Prospective Studies</topic><topic>Regression analysis</topic><topic>Retrospective Studies</topic><topic>Sarcopenia</topic><topic>Skeletal muscle</topic><topic>Small cell lung carcinoma</topic><topic>Statistical significance</topic><topic>Tissues</topic><topic>Values</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makrakis, Dimitrios</creatorcontrib><creatorcontrib>Rounis, Konstantinos</creatorcontrib><creatorcontrib>Tsigkas, Alexandros-Pantelis</creatorcontrib><creatorcontrib>Georgiou, Alexandra</creatorcontrib><creatorcontrib>Galanakis, Nikolaos</creatorcontrib><creatorcontrib>Tsakonas, George</creatorcontrib><creatorcontrib>Ekman, Simon</creatorcontrib><creatorcontrib>Papadaki, Chara</creatorcontrib><creatorcontrib>Monastirioti, Alexia</creatorcontrib><creatorcontrib>Kontogianni, Meropi</creatorcontrib><creatorcontrib>Gioulbasanis, Ioannis</creatorcontrib><creatorcontrib>Mavroudis, Dimitris</creatorcontrib><creatorcontrib>Agelaki, Sofia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makrakis, Dimitrios</au><au>Rounis, Konstantinos</au><au>Tsigkas, Alexandros-Pantelis</au><au>Georgiou, Alexandra</au><au>Galanakis, Nikolaos</au><au>Tsakonas, George</au><au>Ekman, Simon</au><au>Papadaki, Chara</au><au>Monastirioti, Alexia</au><au>Kontogianni, Meropi</au><au>Gioulbasanis, Ioannis</au><au>Mavroudis, Dimitris</au><au>Agelaki, Sofia</au><au>Bauckneht, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of body tissue composition on the outcome of patients with metastatic non-small cell lung cancer treated with PD-1/PD-L1 inhibitors</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-02-10</date><risdate>2023</risdate><volume>18</volume><issue>2</issue><spage>e0277708</spage><epage>e0277708</epage><pages>e0277708-e0277708</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Obesity and sarcopenia have been reported to affect outcomes in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). We analyzed prospective data from 52 patients with non-oncogene driven metastatic NSCLC treated with ICIs. Body tissue composition was calculated by measuring the fat and muscle densities at the level of 3rd lumbar vertebra in each patient computed tomography scan before ICI initiation using sliceOmatic tomovision. We converted the densities to indices [Intramuscular Fat Index (IMFI), Visceral Fat Index (VFI), Subcutaneous Fat Index (SFI), Lumbar Skeletal Muscle Index (LSMI)] by dividing them by height in meters squared. Patients were dichotomized based on their baseline IMFI, VFI and SFI according to their gender-specific median value. The cut-offs that were set for LMSI values were 55 cm2/m2 for males and 39 cm2/m2 for females. SFI distribution was significantly higher (p = 0.040) in responders compared to non-responders. None of the other variables affected response rates. Low LSMI HR: 2.90 (95% CI: 1.261-6.667, p = 0.012) and low SFI: 2.20 (95% CI: 1.114-4.333, p = 0.023) values predicted for inferior OS. VFI and IMFI values did not affect survival. Subcutaneous adipose and skeletal muscle tissue composition significantly affected immunotherapy outcomes in our cohort.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36763597</pmid><doi>10.1371/journal.pone.0277708</doi><tpages>e0277708</tpages><orcidid>https://orcid.org/0000-0002-4591-3757</orcidid><orcidid>https://orcid.org/0000-0001-9878-6053</orcidid><orcidid>https://orcid.org/0000-0003-3258-2984</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-02, Vol.18 (2), p.e0277708-e0277708 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2775220374 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Biology and Life Sciences Biomarkers Body fat Body mass index Brain cancer Carcinoma, Non-Small-Cell Lung - pathology Care and treatment Complications and side effects Composition Computed tomography Data collection Diagnosis Disease control Female Gender Histology Humans Immune checkpoint inhibitors Immune Checkpoint Inhibitors - pharmacology Immune Checkpoint Inhibitors - therapeutic use Immunotherapy Inhibitors Ipilimumab Lung cancer Lung cancer, Non-small cell Lung cancer, Small cell Lung diseases Lung Neoplasms - pathology Male Measuring instruments Medicin och hälsovetenskap Medicine and Health Sciences Melanoma Metastases Metastasis Muscles Musculoskeletal system Non-small cell lung carcinoma Obesity Patient outcomes PD-1 protein PD-L1 protein Prognosis Programmed Cell Death 1 Receptor Prospective Studies Regression analysis Retrospective Studies Sarcopenia Skeletal muscle Small cell lung carcinoma Statistical significance Tissues Values Vertebrae |
title | Effect of body tissue composition on the outcome of patients with metastatic non-small cell lung cancer treated with PD-1/PD-L1 inhibitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20body%20tissue%20composition%20on%20the%20outcome%20of%20patients%20with%20metastatic%20non-small%20cell%20lung%20cancer%20treated%20with%20PD-1/PD-L1%20inhibitors&rft.jtitle=PloS%20one&rft.au=Makrakis,%20Dimitrios&rft.date=2023-02-10&rft.volume=18&rft.issue=2&rft.spage=e0277708&rft.epage=e0277708&rft.pages=e0277708-e0277708&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0277708&rft_dat=%3Cgale_plos_%3EA736558376%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775220374&rft_id=info:pmid/36763597&rft_galeid=A736558376&rft_doaj_id=oai_doaj_org_article_b70a2b3772264cf5ae57cb9b6377d397&rfr_iscdi=true |