New insights into the role of endosomal proteins for African swine fever virus infection
African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocyt...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2022-01, Vol.18 (1), p.e1009784-e1009784 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009784 |
---|---|
container_issue | 1 |
container_start_page | e1009784 |
container_title | PLoS pathogens |
container_volume | 18 |
creator | Cuesta-Geijo, Miguel Ángel García-Dorival, Isabel Del Puerto, Ana Urquiza, Jesús Galindo, Inmaculada Barrado-Gil, Lucía Lasala, Fátima Cayuela, Ana Sorzano, Carlos Oscar S Gil, Carmen Delgado, Rafael Alonso, Covadonga |
description | African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection. |
doi_str_mv | 10.1371/journal.ppat.1009784 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2762198569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691414407</galeid><doaj_id>oai_doaj_org_article_e6884beeddb4427f8e7900ba8624c8dd</doaj_id><sourcerecordid>A691414407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-72ae491dd8515166ee28e41a904c37aa7d9b777956375432090d99eaab3a9ee3</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvhHyCwxAUOCfba648LUlTxEakqEvTAzfLas4mrzTrY3hT-PQ7ZVg3qBfng0fiZdzyvpqpeEjwnVJD312GMg-nn263Jc4KxEpI9qk5J09CZoII9vhefVM9SusaYEUr40-qENlgS0vDT6scl3CA_JL9a51SCHFBeA4qhBxQ6BIMLKWxMj7YxZCgg6kJEiy56awaUbvwAqIMdRLTzcdwrdGCzD8Pz6kln-gQvpvusuvr08er8y-zi6-fl-eJiZjkneSZqA0wR52RDGsI5QC2BEaMws1QYI5xqhRCq4VQ0jNZYYacUGNNSowDoWfX6ILvtQ9KTJ0nXgtdEyYarQiwPhAvmWm-j35j4Wwfj9d9EiCttYva2Bw1cStYCONcyVotOglAYt0bymlnpXNH6MHUb2w04C0OOpj8SPX4Z_Fqvwk5LWWOOmyLwdhKI4ecIKeuNTxb63gwQxvJvXlNaU0ZEQd_8gz483UStTBmguB9KX7sX1QuuCCOM4b3W_AGqHAcbb8MAnS_5o4J3RwWFyfArr8yYkl5-__Yf7OUxyw6sjSGlCN2ddwTr_VrfDqn3a62ntS5lr-77fld0u8f0DyXd8wo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762198569</pqid></control><display><type>article</type><title>New insights into the role of endosomal proteins for African swine fever virus infection</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Cuesta-Geijo, Miguel Ángel ; García-Dorival, Isabel ; Del Puerto, Ana ; Urquiza, Jesús ; Galindo, Inmaculada ; Barrado-Gil, Lucía ; Lasala, Fátima ; Cayuela, Ana ; Sorzano, Carlos Oscar S ; Gil, Carmen ; Delgado, Rafael ; Alonso, Covadonga</creator><creatorcontrib>Cuesta-Geijo, Miguel Ángel ; García-Dorival, Isabel ; Del Puerto, Ana ; Urquiza, Jesús ; Galindo, Inmaculada ; Barrado-Gil, Lucía ; Lasala, Fátima ; Cayuela, Ana ; Sorzano, Carlos Oscar S ; Gil, Carmen ; Delgado, Rafael ; Alonso, Covadonga</creatorcontrib><description>African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009784</identifier><identifier>PMID: 35081156</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acidification ; African swine fever ; African Swine Fever - virology ; African Swine Fever Virus - metabolism ; African Swine Fever Virus - pathogenicity ; Animals ; Asfarviridae ; Biology and Life Sciences ; Cell organelles ; Chlorocebus aethiops ; Cholesterol ; Clathrin ; CRISPR ; Cytoplasm ; Distribution ; Drugs ; Dynamin ; Egress ; Endocytosis ; Endosomes ; Endosomes - metabolism ; Endosomes - virology ; Epidemics ; Fever ; Genetic aspects ; Health aspects ; HEK293 Cells ; Host-Pathogen Interactions - physiology ; Humans ; Infections ; Infectivity ; LAMP-1 protein ; Medicine and Health Sciences ; Membrane fusion ; Membrane proteins ; Membranes ; Multilayers ; Niemann-Pick disease ; Npc1 protein ; Nucleic acids ; Proteins ; Replication ; Research and Analysis Methods ; Severe acute respiratory syndrome coronavirus 2 ; Swine ; Vero Cells ; Viral Proteins - metabolism ; Virions ; Viruses</subject><ispartof>PLoS pathogens, 2022-01, Vol.18 (1), p.e1009784-e1009784</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Cuesta-Geijo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Cuesta-Geijo et al 2022 Cuesta-Geijo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-72ae491dd8515166ee28e41a904c37aa7d9b777956375432090d99eaab3a9ee3</citedby><cites>FETCH-LOGICAL-c661t-72ae491dd8515166ee28e41a904c37aa7d9b777956375432090d99eaab3a9ee3</cites><orcidid>0000-0002-1053-2997 ; 0000-0003-4694-1968 ; 0000-0002-0862-6177 ; 0000-0002-5119-6395 ; 0000-0002-7870-4580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820605/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820605/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35081156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cuesta-Geijo, Miguel Ángel</creatorcontrib><creatorcontrib>García-Dorival, Isabel</creatorcontrib><creatorcontrib>Del Puerto, Ana</creatorcontrib><creatorcontrib>Urquiza, Jesús</creatorcontrib><creatorcontrib>Galindo, Inmaculada</creatorcontrib><creatorcontrib>Barrado-Gil, Lucía</creatorcontrib><creatorcontrib>Lasala, Fátima</creatorcontrib><creatorcontrib>Cayuela, Ana</creatorcontrib><creatorcontrib>Sorzano, Carlos Oscar S</creatorcontrib><creatorcontrib>Gil, Carmen</creatorcontrib><creatorcontrib>Delgado, Rafael</creatorcontrib><creatorcontrib>Alonso, Covadonga</creatorcontrib><title>New insights into the role of endosomal proteins for African swine fever virus infection</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection.</description><subject>Acidification</subject><subject>African swine fever</subject><subject>African Swine Fever - virology</subject><subject>African Swine Fever Virus - metabolism</subject><subject>African Swine Fever Virus - pathogenicity</subject><subject>Animals</subject><subject>Asfarviridae</subject><subject>Biology and Life Sciences</subject><subject>Cell organelles</subject><subject>Chlorocebus aethiops</subject><subject>Cholesterol</subject><subject>Clathrin</subject><subject>CRISPR</subject><subject>Cytoplasm</subject><subject>Distribution</subject><subject>Drugs</subject><subject>Dynamin</subject><subject>Egress</subject><subject>Endocytosis</subject><subject>Endosomes</subject><subject>Endosomes - metabolism</subject><subject>Endosomes - virology</subject><subject>Epidemics</subject><subject>Fever</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectivity</subject><subject>LAMP-1 protein</subject><subject>Medicine and Health Sciences</subject><subject>Membrane fusion</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Multilayers</subject><subject>Niemann-Pick disease</subject><subject>Npc1 protein</subject><subject>Nucleic acids</subject><subject>Proteins</subject><subject>Replication</subject><subject>Research and Analysis Methods</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Swine</subject><subject>Vero Cells</subject><subject>Viral Proteins - metabolism</subject><subject>Virions</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvhHyCwxAUOCfba648LUlTxEakqEvTAzfLas4mrzTrY3hT-PQ7ZVg3qBfng0fiZdzyvpqpeEjwnVJD312GMg-nn263Jc4KxEpI9qk5J09CZoII9vhefVM9SusaYEUr40-qENlgS0vDT6scl3CA_JL9a51SCHFBeA4qhBxQ6BIMLKWxMj7YxZCgg6kJEiy56awaUbvwAqIMdRLTzcdwrdGCzD8Pz6kln-gQvpvusuvr08er8y-zi6-fl-eJiZjkneSZqA0wR52RDGsI5QC2BEaMws1QYI5xqhRCq4VQ0jNZYYacUGNNSowDoWfX6ILvtQ9KTJ0nXgtdEyYarQiwPhAvmWm-j35j4Wwfj9d9EiCttYva2Bw1cStYCONcyVotOglAYt0bymlnpXNH6MHUb2w04C0OOpj8SPX4Z_Fqvwk5LWWOOmyLwdhKI4ecIKeuNTxb63gwQxvJvXlNaU0ZEQd_8gz483UStTBmguB9KX7sX1QuuCCOM4b3W_AGqHAcbb8MAnS_5o4J3RwWFyfArr8yYkl5-__Yf7OUxyw6sjSGlCN2ddwTr_VrfDqn3a62ntS5lr-77fld0u8f0DyXd8wo</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Cuesta-Geijo, Miguel Ángel</creator><creator>García-Dorival, Isabel</creator><creator>Del Puerto, Ana</creator><creator>Urquiza, Jesús</creator><creator>Galindo, Inmaculada</creator><creator>Barrado-Gil, Lucía</creator><creator>Lasala, Fátima</creator><creator>Cayuela, Ana</creator><creator>Sorzano, Carlos Oscar S</creator><creator>Gil, Carmen</creator><creator>Delgado, Rafael</creator><creator>Alonso, Covadonga</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1053-2997</orcidid><orcidid>https://orcid.org/0000-0003-4694-1968</orcidid><orcidid>https://orcid.org/0000-0002-0862-6177</orcidid><orcidid>https://orcid.org/0000-0002-5119-6395</orcidid><orcidid>https://orcid.org/0000-0002-7870-4580</orcidid></search><sort><creationdate>20220101</creationdate><title>New insights into the role of endosomal proteins for African swine fever virus infection</title><author>Cuesta-Geijo, Miguel Ángel ; García-Dorival, Isabel ; Del Puerto, Ana ; Urquiza, Jesús ; Galindo, Inmaculada ; Barrado-Gil, Lucía ; Lasala, Fátima ; Cayuela, Ana ; Sorzano, Carlos Oscar S ; Gil, Carmen ; Delgado, Rafael ; Alonso, Covadonga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-72ae491dd8515166ee28e41a904c37aa7d9b777956375432090d99eaab3a9ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acidification</topic><topic>African swine fever</topic><topic>African Swine Fever - virology</topic><topic>African Swine Fever Virus - metabolism</topic><topic>African Swine Fever Virus - pathogenicity</topic><topic>Animals</topic><topic>Asfarviridae</topic><topic>Biology and Life Sciences</topic><topic>Cell organelles</topic><topic>Chlorocebus aethiops</topic><topic>Cholesterol</topic><topic>Clathrin</topic><topic>CRISPR</topic><topic>Cytoplasm</topic><topic>Distribution</topic><topic>Drugs</topic><topic>Dynamin</topic><topic>Egress</topic><topic>Endocytosis</topic><topic>Endosomes</topic><topic>Endosomes - metabolism</topic><topic>Endosomes - virology</topic><topic>Epidemics</topic><topic>Fever</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectivity</topic><topic>LAMP-1 protein</topic><topic>Medicine and Health Sciences</topic><topic>Membrane fusion</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Multilayers</topic><topic>Niemann-Pick disease</topic><topic>Npc1 protein</topic><topic>Nucleic acids</topic><topic>Proteins</topic><topic>Replication</topic><topic>Research and Analysis Methods</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Swine</topic><topic>Vero Cells</topic><topic>Viral Proteins - metabolism</topic><topic>Virions</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuesta-Geijo, Miguel Ángel</creatorcontrib><creatorcontrib>García-Dorival, Isabel</creatorcontrib><creatorcontrib>Del Puerto, Ana</creatorcontrib><creatorcontrib>Urquiza, Jesús</creatorcontrib><creatorcontrib>Galindo, Inmaculada</creatorcontrib><creatorcontrib>Barrado-Gil, Lucía</creatorcontrib><creatorcontrib>Lasala, Fátima</creatorcontrib><creatorcontrib>Cayuela, Ana</creatorcontrib><creatorcontrib>Sorzano, Carlos Oscar S</creatorcontrib><creatorcontrib>Gil, Carmen</creatorcontrib><creatorcontrib>Delgado, Rafael</creatorcontrib><creatorcontrib>Alonso, Covadonga</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuesta-Geijo, Miguel Ángel</au><au>García-Dorival, Isabel</au><au>Del Puerto, Ana</au><au>Urquiza, Jesús</au><au>Galindo, Inmaculada</au><au>Barrado-Gil, Lucía</au><au>Lasala, Fátima</au><au>Cayuela, Ana</au><au>Sorzano, Carlos Oscar S</au><au>Gil, Carmen</au><au>Delgado, Rafael</au><au>Alonso, Covadonga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into the role of endosomal proteins for African swine fever virus infection</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>18</volume><issue>1</issue><spage>e1009784</spage><epage>e1009784</epage><pages>e1009784-e1009784</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35081156</pmid><doi>10.1371/journal.ppat.1009784</doi><orcidid>https://orcid.org/0000-0002-1053-2997</orcidid><orcidid>https://orcid.org/0000-0003-4694-1968</orcidid><orcidid>https://orcid.org/0000-0002-0862-6177</orcidid><orcidid>https://orcid.org/0000-0002-5119-6395</orcidid><orcidid>https://orcid.org/0000-0002-7870-4580</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2022-01, Vol.18 (1), p.e1009784-e1009784 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2762198569 |
source | PubMed (Medline); MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Acidification African swine fever African Swine Fever - virology African Swine Fever Virus - metabolism African Swine Fever Virus - pathogenicity Animals Asfarviridae Biology and Life Sciences Cell organelles Chlorocebus aethiops Cholesterol Clathrin CRISPR Cytoplasm Distribution Drugs Dynamin Egress Endocytosis Endosomes Endosomes - metabolism Endosomes - virology Epidemics Fever Genetic aspects Health aspects HEK293 Cells Host-Pathogen Interactions - physiology Humans Infections Infectivity LAMP-1 protein Medicine and Health Sciences Membrane fusion Membrane proteins Membranes Multilayers Niemann-Pick disease Npc1 protein Nucleic acids Proteins Replication Research and Analysis Methods Severe acute respiratory syndrome coronavirus 2 Swine Vero Cells Viral Proteins - metabolism Virions Viruses |
title | New insights into the role of endosomal proteins for African swine fever virus infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20the%20role%20of%20endosomal%20proteins%20for%20African%20swine%20fever%20virus%20infection&rft.jtitle=PLoS%20pathogens&rft.au=Cuesta-Geijo,%20Miguel%20%C3%81ngel&rft.date=2022-01-01&rft.volume=18&rft.issue=1&rft.spage=e1009784&rft.epage=e1009784&rft.pages=e1009784-e1009784&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009784&rft_dat=%3Cgale_plos_%3EA691414407%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762198569&rft_id=info:pmid/35081156&rft_galeid=A691414407&rft_doaj_id=oai_doaj_org_article_e6884beeddb4427f8e7900ba8624c8dd&rfr_iscdi=true |