New insights into the role of endosomal proteins for African swine fever virus infection

African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocyt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2022-01, Vol.18 (1), p.e1009784-e1009784
Hauptverfasser: Cuesta-Geijo, Miguel Ángel, García-Dorival, Isabel, Del Puerto, Ana, Urquiza, Jesús, Galindo, Inmaculada, Barrado-Gil, Lucía, Lasala, Fátima, Cayuela, Ana, Sorzano, Carlos Oscar S, Gil, Carmen, Delgado, Rafael, Alonso, Covadonga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009784
container_issue 1
container_start_page e1009784
container_title PLoS pathogens
container_volume 18
creator Cuesta-Geijo, Miguel Ángel
García-Dorival, Isabel
Del Puerto, Ana
Urquiza, Jesús
Galindo, Inmaculada
Barrado-Gil, Lucía
Lasala, Fátima
Cayuela, Ana
Sorzano, Carlos Oscar S
Gil, Carmen
Delgado, Rafael
Alonso, Covadonga
description African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection.
doi_str_mv 10.1371/journal.ppat.1009784
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2762198569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691414407</galeid><doaj_id>oai_doaj_org_article_e6884beeddb4427f8e7900ba8624c8dd</doaj_id><sourcerecordid>A691414407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-72ae491dd8515166ee28e41a904c37aa7d9b777956375432090d99eaab3a9ee3</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvhHyCwxAUOCfba648LUlTxEakqEvTAzfLas4mrzTrY3hT-PQ7ZVg3qBfng0fiZdzyvpqpeEjwnVJD312GMg-nn263Jc4KxEpI9qk5J09CZoII9vhefVM9SusaYEUr40-qENlgS0vDT6scl3CA_JL9a51SCHFBeA4qhBxQ6BIMLKWxMj7YxZCgg6kJEiy56awaUbvwAqIMdRLTzcdwrdGCzD8Pz6kln-gQvpvusuvr08er8y-zi6-fl-eJiZjkneSZqA0wR52RDGsI5QC2BEaMws1QYI5xqhRCq4VQ0jNZYYacUGNNSowDoWfX6ILvtQ9KTJ0nXgtdEyYarQiwPhAvmWm-j35j4Wwfj9d9EiCttYva2Bw1cStYCONcyVotOglAYt0bymlnpXNH6MHUb2w04C0OOpj8SPX4Z_Fqvwk5LWWOOmyLwdhKI4ecIKeuNTxb63gwQxvJvXlNaU0ZEQd_8gz483UStTBmguB9KX7sX1QuuCCOM4b3W_AGqHAcbb8MAnS_5o4J3RwWFyfArr8yYkl5-__Yf7OUxyw6sjSGlCN2ddwTr_VrfDqn3a62ntS5lr-77fld0u8f0DyXd8wo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762198569</pqid></control><display><type>article</type><title>New insights into the role of endosomal proteins for African swine fever virus infection</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Cuesta-Geijo, Miguel Ángel ; García-Dorival, Isabel ; Del Puerto, Ana ; Urquiza, Jesús ; Galindo, Inmaculada ; Barrado-Gil, Lucía ; Lasala, Fátima ; Cayuela, Ana ; Sorzano, Carlos Oscar S ; Gil, Carmen ; Delgado, Rafael ; Alonso, Covadonga</creator><creatorcontrib>Cuesta-Geijo, Miguel Ángel ; García-Dorival, Isabel ; Del Puerto, Ana ; Urquiza, Jesús ; Galindo, Inmaculada ; Barrado-Gil, Lucía ; Lasala, Fátima ; Cayuela, Ana ; Sorzano, Carlos Oscar S ; Gil, Carmen ; Delgado, Rafael ; Alonso, Covadonga</creatorcontrib><description>African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009784</identifier><identifier>PMID: 35081156</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acidification ; African swine fever ; African Swine Fever - virology ; African Swine Fever Virus - metabolism ; African Swine Fever Virus - pathogenicity ; Animals ; Asfarviridae ; Biology and Life Sciences ; Cell organelles ; Chlorocebus aethiops ; Cholesterol ; Clathrin ; CRISPR ; Cytoplasm ; Distribution ; Drugs ; Dynamin ; Egress ; Endocytosis ; Endosomes ; Endosomes - metabolism ; Endosomes - virology ; Epidemics ; Fever ; Genetic aspects ; Health aspects ; HEK293 Cells ; Host-Pathogen Interactions - physiology ; Humans ; Infections ; Infectivity ; LAMP-1 protein ; Medicine and Health Sciences ; Membrane fusion ; Membrane proteins ; Membranes ; Multilayers ; Niemann-Pick disease ; Npc1 protein ; Nucleic acids ; Proteins ; Replication ; Research and Analysis Methods ; Severe acute respiratory syndrome coronavirus 2 ; Swine ; Vero Cells ; Viral Proteins - metabolism ; Virions ; Viruses</subject><ispartof>PLoS pathogens, 2022-01, Vol.18 (1), p.e1009784-e1009784</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Cuesta-Geijo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Cuesta-Geijo et al 2022 Cuesta-Geijo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-72ae491dd8515166ee28e41a904c37aa7d9b777956375432090d99eaab3a9ee3</citedby><cites>FETCH-LOGICAL-c661t-72ae491dd8515166ee28e41a904c37aa7d9b777956375432090d99eaab3a9ee3</cites><orcidid>0000-0002-1053-2997 ; 0000-0003-4694-1968 ; 0000-0002-0862-6177 ; 0000-0002-5119-6395 ; 0000-0002-7870-4580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820605/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820605/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35081156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cuesta-Geijo, Miguel Ángel</creatorcontrib><creatorcontrib>García-Dorival, Isabel</creatorcontrib><creatorcontrib>Del Puerto, Ana</creatorcontrib><creatorcontrib>Urquiza, Jesús</creatorcontrib><creatorcontrib>Galindo, Inmaculada</creatorcontrib><creatorcontrib>Barrado-Gil, Lucía</creatorcontrib><creatorcontrib>Lasala, Fátima</creatorcontrib><creatorcontrib>Cayuela, Ana</creatorcontrib><creatorcontrib>Sorzano, Carlos Oscar S</creatorcontrib><creatorcontrib>Gil, Carmen</creatorcontrib><creatorcontrib>Delgado, Rafael</creatorcontrib><creatorcontrib>Alonso, Covadonga</creatorcontrib><title>New insights into the role of endosomal proteins for African swine fever virus infection</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection.</description><subject>Acidification</subject><subject>African swine fever</subject><subject>African Swine Fever - virology</subject><subject>African Swine Fever Virus - metabolism</subject><subject>African Swine Fever Virus - pathogenicity</subject><subject>Animals</subject><subject>Asfarviridae</subject><subject>Biology and Life Sciences</subject><subject>Cell organelles</subject><subject>Chlorocebus aethiops</subject><subject>Cholesterol</subject><subject>Clathrin</subject><subject>CRISPR</subject><subject>Cytoplasm</subject><subject>Distribution</subject><subject>Drugs</subject><subject>Dynamin</subject><subject>Egress</subject><subject>Endocytosis</subject><subject>Endosomes</subject><subject>Endosomes - metabolism</subject><subject>Endosomes - virology</subject><subject>Epidemics</subject><subject>Fever</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectivity</subject><subject>LAMP-1 protein</subject><subject>Medicine and Health Sciences</subject><subject>Membrane fusion</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Multilayers</subject><subject>Niemann-Pick disease</subject><subject>Npc1 protein</subject><subject>Nucleic acids</subject><subject>Proteins</subject><subject>Replication</subject><subject>Research and Analysis Methods</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Swine</subject><subject>Vero Cells</subject><subject>Viral Proteins - metabolism</subject><subject>Virions</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvhHyCwxAUOCfba648LUlTxEakqEvTAzfLas4mrzTrY3hT-PQ7ZVg3qBfng0fiZdzyvpqpeEjwnVJD312GMg-nn263Jc4KxEpI9qk5J09CZoII9vhefVM9SusaYEUr40-qENlgS0vDT6scl3CA_JL9a51SCHFBeA4qhBxQ6BIMLKWxMj7YxZCgg6kJEiy56awaUbvwAqIMdRLTzcdwrdGCzD8Pz6kln-gQvpvusuvr08er8y-zi6-fl-eJiZjkneSZqA0wR52RDGsI5QC2BEaMws1QYI5xqhRCq4VQ0jNZYYacUGNNSowDoWfX6ILvtQ9KTJ0nXgtdEyYarQiwPhAvmWm-j35j4Wwfj9d9EiCttYva2Bw1cStYCONcyVotOglAYt0bymlnpXNH6MHUb2w04C0OOpj8SPX4Z_Fqvwk5LWWOOmyLwdhKI4ecIKeuNTxb63gwQxvJvXlNaU0ZEQd_8gz483UStTBmguB9KX7sX1QuuCCOM4b3W_AGqHAcbb8MAnS_5o4J3RwWFyfArr8yYkl5-__Yf7OUxyw6sjSGlCN2ddwTr_VrfDqn3a62ntS5lr-77fld0u8f0DyXd8wo</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Cuesta-Geijo, Miguel Ángel</creator><creator>García-Dorival, Isabel</creator><creator>Del Puerto, Ana</creator><creator>Urquiza, Jesús</creator><creator>Galindo, Inmaculada</creator><creator>Barrado-Gil, Lucía</creator><creator>Lasala, Fátima</creator><creator>Cayuela, Ana</creator><creator>Sorzano, Carlos Oscar S</creator><creator>Gil, Carmen</creator><creator>Delgado, Rafael</creator><creator>Alonso, Covadonga</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1053-2997</orcidid><orcidid>https://orcid.org/0000-0003-4694-1968</orcidid><orcidid>https://orcid.org/0000-0002-0862-6177</orcidid><orcidid>https://orcid.org/0000-0002-5119-6395</orcidid><orcidid>https://orcid.org/0000-0002-7870-4580</orcidid></search><sort><creationdate>20220101</creationdate><title>New insights into the role of endosomal proteins for African swine fever virus infection</title><author>Cuesta-Geijo, Miguel Ángel ; García-Dorival, Isabel ; Del Puerto, Ana ; Urquiza, Jesús ; Galindo, Inmaculada ; Barrado-Gil, Lucía ; Lasala, Fátima ; Cayuela, Ana ; Sorzano, Carlos Oscar S ; Gil, Carmen ; Delgado, Rafael ; Alonso, Covadonga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-72ae491dd8515166ee28e41a904c37aa7d9b777956375432090d99eaab3a9ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acidification</topic><topic>African swine fever</topic><topic>African Swine Fever - virology</topic><topic>African Swine Fever Virus - metabolism</topic><topic>African Swine Fever Virus - pathogenicity</topic><topic>Animals</topic><topic>Asfarviridae</topic><topic>Biology and Life Sciences</topic><topic>Cell organelles</topic><topic>Chlorocebus aethiops</topic><topic>Cholesterol</topic><topic>Clathrin</topic><topic>CRISPR</topic><topic>Cytoplasm</topic><topic>Distribution</topic><topic>Drugs</topic><topic>Dynamin</topic><topic>Egress</topic><topic>Endocytosis</topic><topic>Endosomes</topic><topic>Endosomes - metabolism</topic><topic>Endosomes - virology</topic><topic>Epidemics</topic><topic>Fever</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectivity</topic><topic>LAMP-1 protein</topic><topic>Medicine and Health Sciences</topic><topic>Membrane fusion</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Multilayers</topic><topic>Niemann-Pick disease</topic><topic>Npc1 protein</topic><topic>Nucleic acids</topic><topic>Proteins</topic><topic>Replication</topic><topic>Research and Analysis Methods</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Swine</topic><topic>Vero Cells</topic><topic>Viral Proteins - metabolism</topic><topic>Virions</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuesta-Geijo, Miguel Ángel</creatorcontrib><creatorcontrib>García-Dorival, Isabel</creatorcontrib><creatorcontrib>Del Puerto, Ana</creatorcontrib><creatorcontrib>Urquiza, Jesús</creatorcontrib><creatorcontrib>Galindo, Inmaculada</creatorcontrib><creatorcontrib>Barrado-Gil, Lucía</creatorcontrib><creatorcontrib>Lasala, Fátima</creatorcontrib><creatorcontrib>Cayuela, Ana</creatorcontrib><creatorcontrib>Sorzano, Carlos Oscar S</creatorcontrib><creatorcontrib>Gil, Carmen</creatorcontrib><creatorcontrib>Delgado, Rafael</creatorcontrib><creatorcontrib>Alonso, Covadonga</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuesta-Geijo, Miguel Ángel</au><au>García-Dorival, Isabel</au><au>Del Puerto, Ana</au><au>Urquiza, Jesús</au><au>Galindo, Inmaculada</au><au>Barrado-Gil, Lucía</au><au>Lasala, Fátima</au><au>Cayuela, Ana</au><au>Sorzano, Carlos Oscar S</au><au>Gil, Carmen</au><au>Delgado, Rafael</au><au>Alonso, Covadonga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into the role of endosomal proteins for African swine fever virus infection</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>18</volume><issue>1</issue><spage>e1009784</spage><epage>e1009784</epage><pages>e1009784-e1009784</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35081156</pmid><doi>10.1371/journal.ppat.1009784</doi><orcidid>https://orcid.org/0000-0002-1053-2997</orcidid><orcidid>https://orcid.org/0000-0003-4694-1968</orcidid><orcidid>https://orcid.org/0000-0002-0862-6177</orcidid><orcidid>https://orcid.org/0000-0002-5119-6395</orcidid><orcidid>https://orcid.org/0000-0002-7870-4580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2022-01, Vol.18 (1), p.e1009784-e1009784
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2762198569
source PubMed (Medline); MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access
subjects Acidification
African swine fever
African Swine Fever - virology
African Swine Fever Virus - metabolism
African Swine Fever Virus - pathogenicity
Animals
Asfarviridae
Biology and Life Sciences
Cell organelles
Chlorocebus aethiops
Cholesterol
Clathrin
CRISPR
Cytoplasm
Distribution
Drugs
Dynamin
Egress
Endocytosis
Endosomes
Endosomes - metabolism
Endosomes - virology
Epidemics
Fever
Genetic aspects
Health aspects
HEK293 Cells
Host-Pathogen Interactions - physiology
Humans
Infections
Infectivity
LAMP-1 protein
Medicine and Health Sciences
Membrane fusion
Membrane proteins
Membranes
Multilayers
Niemann-Pick disease
Npc1 protein
Nucleic acids
Proteins
Replication
Research and Analysis Methods
Severe acute respiratory syndrome coronavirus 2
Swine
Vero Cells
Viral Proteins - metabolism
Virions
Viruses
title New insights into the role of endosomal proteins for African swine fever virus infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20the%20role%20of%20endosomal%20proteins%20for%20African%20swine%20fever%20virus%20infection&rft.jtitle=PLoS%20pathogens&rft.au=Cuesta-Geijo,%20Miguel%20%C3%81ngel&rft.date=2022-01-01&rft.volume=18&rft.issue=1&rft.spage=e1009784&rft.epage=e1009784&rft.pages=e1009784-e1009784&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009784&rft_dat=%3Cgale_plos_%3EA691414407%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762198569&rft_id=info:pmid/35081156&rft_galeid=A691414407&rft_doaj_id=oai_doaj_org_article_e6884beeddb4427f8e7900ba8624c8dd&rfr_iscdi=true