Controlling gene expression timing through gene regulatory architecture

Gene networks typically involve the regulatory control of multiple genes with related function. This connectivity enables correlated control of the levels and timing of gene expression. Here we study how gene expression timing in the single-input module motif can be encoded in the regulatory DNA of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-01, Vol.18 (1), p.e1009745-e1009745
Hauptverfasser: Ali, Md Zulfikar, Brewster, Robert C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009745
container_issue 1
container_start_page e1009745
container_title PLoS computational biology
container_volume 18
creator Ali, Md Zulfikar
Brewster, Robert C
description Gene networks typically involve the regulatory control of multiple genes with related function. This connectivity enables correlated control of the levels and timing of gene expression. Here we study how gene expression timing in the single-input module motif can be encoded in the regulatory DNA of a gene. Using stochastic simulations, we examine the role of binding affinity, TF regulatory function and network size in controlling the mean first-passage time to reach a fixed fraction of steady-state expression for both an auto-regulated TF gene and a target gene. We also examine how the variability in first-passage time depends on these factors. We find that both network size and binding affinity can dramatically speed up or slow down the response time of network genes, in some cases predicting more than a 100-fold change compared to that for a constitutive gene. Furthermore, these factors can also significantly impact the fidelity of this response. Importantly, these effects do not occur at "extremes" of network size or binding affinity, but rather in an intermediate window of either quantity.
doi_str_mv 10.1371/journal.pcbi.1009745
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2762183811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691414661</galeid><doaj_id>oai_doaj_org_article_f7df754f153149d595976a93c3d577cc</doaj_id><sourcerecordid>A691414661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-d28ef6e754d55c1093b55ec6c9bb418a7894a1239941f6179647604a7dc4b3093</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEog_4BghW4lIOu2TiV3ypVK2grFSBxONsOc4k61USL7aD2m-Pl6RVF3FBPng085v_PDRZ9gryFRAB73du9IPuVntT2RXkuRSUPclOgTGyFISVTx_ZJ9lZCLs8T6bkz7MTwnIKnMJpdr12Q_Su6-zQLloccIG3e48hWDcsou0P7rj1bmy3U9hjO3Y6On-30N5sbUQTR48vsmeN7gK-nP_z7MfHD9_Xn5Y3X64366ubpeGExGVdlNhwFIzWjBnIJakYQ8ONrCoKpRalpBoKIiWFhoOQnAqeUy1qQyuS8PPszaS771xQ8w6CKgQvoCQlQCI2E1E7vVN7b3vt75TTVv1xON8q7aM1HapG1E1qpQFGgMqaSSYF15IYUjMhjElal3O1seqxNph2pbsj0ePIYLeqdb9UKaQoOEsCF7OAdz9HDFH1NhjsOj2gG1Pfqe2Cl0QUCX37F_rv6VYT1eo0gB0al-qa9GrsrXEDNjb5r7gECpTzQ8K7o4TERLyNrR5DUJtvX_-D_XzM0ok13oXgsXnYCuTqcKD37avDgar5QFPa68cbfUi6v0jyGwV04UA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762183811</pqid></control><display><type>article</type><title>Controlling gene expression timing through gene regulatory architecture</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Ali, Md Zulfikar ; Brewster, Robert C</creator><contributor>Morozov, Alexandre V.</contributor><creatorcontrib>Ali, Md Zulfikar ; Brewster, Robert C ; Morozov, Alexandre V.</creatorcontrib><description>Gene networks typically involve the regulatory control of multiple genes with related function. This connectivity enables correlated control of the levels and timing of gene expression. Here we study how gene expression timing in the single-input module motif can be encoded in the regulatory DNA of a gene. Using stochastic simulations, we examine the role of binding affinity, TF regulatory function and network size in controlling the mean first-passage time to reach a fixed fraction of steady-state expression for both an auto-regulated TF gene and a target gene. We also examine how the variability in first-passage time depends on these factors. We find that both network size and binding affinity can dramatically speed up or slow down the response time of network genes, in some cases predicting more than a 100-fold change compared to that for a constitutive gene. Furthermore, these factors can also significantly impact the fidelity of this response. Importantly, these effects do not occur at "extremes" of network size or binding affinity, but rather in an intermediate window of either quantity.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009745</identifier><identifier>PMID: 35041641</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affinity ; Binding ; Binding sites ; Biology and Life Sciences ; Cell division ; Computer and Information Sciences ; Computer Simulation ; Deoxyribonucleic acid ; DNA ; E coli ; Gene expression ; Gene Expression Regulation - genetics ; Gene Regulatory Networks - genetics ; Genes ; Genes, Regulator - genetics ; Models, Genetic ; Observations ; Protein Binding ; Proteins ; Response time ; Stochasticity ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>PLoS computational biology, 2022-01, Vol.18 (1), p.e1009745-e1009745</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Ali, Brewster. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Ali, Brewster 2022 Ali, Brewster</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-d28ef6e754d55c1093b55ec6c9bb418a7894a1239941f6179647604a7dc4b3093</citedby><cites>FETCH-LOGICAL-c633t-d28ef6e754d55c1093b55ec6c9bb418a7894a1239941f6179647604a7dc4b3093</cites><orcidid>0000-0002-7656-4086 ; 0000-0002-7054-0059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8797265/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8797265/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35041641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Morozov, Alexandre V.</contributor><creatorcontrib>Ali, Md Zulfikar</creatorcontrib><creatorcontrib>Brewster, Robert C</creatorcontrib><title>Controlling gene expression timing through gene regulatory architecture</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Gene networks typically involve the regulatory control of multiple genes with related function. This connectivity enables correlated control of the levels and timing of gene expression. Here we study how gene expression timing in the single-input module motif can be encoded in the regulatory DNA of a gene. Using stochastic simulations, we examine the role of binding affinity, TF regulatory function and network size in controlling the mean first-passage time to reach a fixed fraction of steady-state expression for both an auto-regulated TF gene and a target gene. We also examine how the variability in first-passage time depends on these factors. We find that both network size and binding affinity can dramatically speed up or slow down the response time of network genes, in some cases predicting more than a 100-fold change compared to that for a constitutive gene. Furthermore, these factors can also significantly impact the fidelity of this response. Importantly, these effects do not occur at "extremes" of network size or binding affinity, but rather in an intermediate window of either quantity.</description><subject>Affinity</subject><subject>Binding</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Cell division</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>E coli</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genes, Regulator - genetics</subject><subject>Models, Genetic</subject><subject>Observations</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Response time</subject><subject>Stochasticity</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEog_4BghW4lIOu2TiV3ypVK2grFSBxONsOc4k61USL7aD2m-Pl6RVF3FBPng085v_PDRZ9gryFRAB73du9IPuVntT2RXkuRSUPclOgTGyFISVTx_ZJ9lZCLs8T6bkz7MTwnIKnMJpdr12Q_Su6-zQLloccIG3e48hWDcsou0P7rj1bmy3U9hjO3Y6On-30N5sbUQTR48vsmeN7gK-nP_z7MfHD9_Xn5Y3X64366ubpeGExGVdlNhwFIzWjBnIJakYQ8ONrCoKpRalpBoKIiWFhoOQnAqeUy1qQyuS8PPszaS771xQ8w6CKgQvoCQlQCI2E1E7vVN7b3vt75TTVv1xON8q7aM1HapG1E1qpQFGgMqaSSYF15IYUjMhjElal3O1seqxNph2pbsj0ePIYLeqdb9UKaQoOEsCF7OAdz9HDFH1NhjsOj2gG1Pfqe2Cl0QUCX37F_rv6VYT1eo0gB0al-qa9GrsrXEDNjb5r7gECpTzQ8K7o4TERLyNrR5DUJtvX_-D_XzM0ok13oXgsXnYCuTqcKD37avDgar5QFPa68cbfUi6v0jyGwV04UA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ali, Md Zulfikar</creator><creator>Brewster, Robert C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7656-4086</orcidid><orcidid>https://orcid.org/0000-0002-7054-0059</orcidid></search><sort><creationdate>20220101</creationdate><title>Controlling gene expression timing through gene regulatory architecture</title><author>Ali, Md Zulfikar ; Brewster, Robert C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-d28ef6e754d55c1093b55ec6c9bb418a7894a1239941f6179647604a7dc4b3093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affinity</topic><topic>Binding</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Cell division</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>E coli</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genes, Regulator - genetics</topic><topic>Models, Genetic</topic><topic>Observations</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Response time</topic><topic>Stochasticity</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Md Zulfikar</creatorcontrib><creatorcontrib>Brewster, Robert C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Md Zulfikar</au><au>Brewster, Robert C</au><au>Morozov, Alexandre V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling gene expression timing through gene regulatory architecture</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>18</volume><issue>1</issue><spage>e1009745</spage><epage>e1009745</epage><pages>e1009745-e1009745</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Gene networks typically involve the regulatory control of multiple genes with related function. This connectivity enables correlated control of the levels and timing of gene expression. Here we study how gene expression timing in the single-input module motif can be encoded in the regulatory DNA of a gene. Using stochastic simulations, we examine the role of binding affinity, TF regulatory function and network size in controlling the mean first-passage time to reach a fixed fraction of steady-state expression for both an auto-regulated TF gene and a target gene. We also examine how the variability in first-passage time depends on these factors. We find that both network size and binding affinity can dramatically speed up or slow down the response time of network genes, in some cases predicting more than a 100-fold change compared to that for a constitutive gene. Furthermore, these factors can also significantly impact the fidelity of this response. Importantly, these effects do not occur at "extremes" of network size or binding affinity, but rather in an intermediate window of either quantity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35041641</pmid><doi>10.1371/journal.pcbi.1009745</doi><orcidid>https://orcid.org/0000-0002-7656-4086</orcidid><orcidid>https://orcid.org/0000-0002-7054-0059</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2022-01, Vol.18 (1), p.e1009745-e1009745
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2762183811
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Affinity
Binding
Binding sites
Biology and Life Sciences
Cell division
Computer and Information Sciences
Computer Simulation
Deoxyribonucleic acid
DNA
E coli
Gene expression
Gene Expression Regulation - genetics
Gene Regulatory Networks - genetics
Genes
Genes, Regulator - genetics
Models, Genetic
Observations
Protein Binding
Proteins
Response time
Stochasticity
Transcription Factors - genetics
Transcription Factors - metabolism
title Controlling gene expression timing through gene regulatory architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20gene%20expression%20timing%20through%20gene%20regulatory%20architecture&rft.jtitle=PLoS%20computational%20biology&rft.au=Ali,%20Md%20Zulfikar&rft.date=2022-01-01&rft.volume=18&rft.issue=1&rft.spage=e1009745&rft.epage=e1009745&rft.pages=e1009745-e1009745&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009745&rft_dat=%3Cgale_plos_%3EA691414661%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762183811&rft_id=info:pmid/35041641&rft_galeid=A691414661&rft_doaj_id=oai_doaj_org_article_f7df754f153149d595976a93c3d577cc&rfr_iscdi=true