Cell-surface protein YwfG of Lactococcus lactis binds to α-1,2-linked mannose

Lactococcus lactis strains are used as starter cultures in the production of fermented dairy and vegetable foods, but the species also occurs in other niches such as plant material. Lactococcus lactis subsp. lactis G50 (G50) is a plant-derived strain and potential candidate probiotics. Western blott...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2023-01, Vol.18 (1), p.e0273955-e0273955
Hauptverfasser: Tsuchiya, Wataru, Fujimoto, Zui, Inagaki, Noritoshi, Nakagawa, Hiroyuki, Tanaka, Miwa, Kimoto-Nira, Hiromi, Yamazaki, Toshimasa, Suzuki, Chise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0273955
container_issue 1
container_start_page e0273955
container_title PloS one
container_volume 18
creator Tsuchiya, Wataru
Fujimoto, Zui
Inagaki, Noritoshi
Nakagawa, Hiroyuki
Tanaka, Miwa
Kimoto-Nira, Hiromi
Yamazaki, Toshimasa
Suzuki, Chise
description Lactococcus lactis strains are used as starter cultures in the production of fermented dairy and vegetable foods, but the species also occurs in other niches such as plant material. Lactococcus lactis subsp. lactis G50 (G50) is a plant-derived strain and potential candidate probiotics. Western blotting of cell-wall proteins using antibodies generated against whole G50 cells detected a 120-kDa protein. MALDI-TOF MS analysis identified it as YwfG, a Leu-Pro-any-Thr-Gly cell-wall-anchor-domain-containing protein. Based on a predicted domain structure, a recombinant YwfG variant covering the N-terminal half (aa 28-511) of YwfG (YwfG28-511) was crystallized and the crystal structure was determined. The structure consisted of an L-type lectin domain, a mucin-binding protein domain, and a mucus-binding protein repeat. Recombinant YwfG variants containing combinations of these domains (YwfG28-270, YwfG28-336, YwfG28-511, MubR4) were prepared and their interactions with monosaccharides were examined by isothermal titration calorimetry; the only interaction observed was between YwfG28-270, which contained the L-type lectin domain, and d-mannose. Among four mannobioses, α-1,2-mannobiose had the highest affinity for YwfG28-270 (dissociation constant = 34 μM). YwfG28-270 also interacted with yeast mannoproteins and yeast mannan. Soaking of the crystals of YwfG28-511 with mannose or α-1,2-mannobiose revealed that both sugars bound to the L-type lectin domain in a similar manner, although the presence of the mucin-binding protein domain and the mucus-binding protein repeat within the recombinant protein inhibited the interaction between the L-type lectin domain and mannose residues. Three of the YwfG variants (except MubR4) induced aggregation of yeast cells. Strain G50 also induced aggregation of yeast cells, which was abolished by deletion of ywfG from G50, suggesting that surface YwfG contributes to the interaction with yeast cells. These findings provide new structural and functional insights into the interaction between L. lactis and its ecological niche via binding of the cell-surface protein YwfG with mannose.
doi_str_mv 10.1371/journal.pone.0273955
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2761138051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4ed02d6a9341451184d373165bf4d2c2</doaj_id><sourcerecordid>2761180814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-1ed537f8b482e96572ef683bf5e0539aefe07abf88ebf5a24d268f172300e4f73</originalsourceid><addsrcrecordid>eNptUstuFDEQtBCIhMAfIBiJCwdm8dueCxJahRBpBRc4cLI8djvMMmsv9gyIz8qP8E047CRKECe32lXV1a1C6CnBK8IUeb1Nc452XO1ThBWminVC3EPHpGO0lRSz-7fqI_SolC3GgmkpH6IjJiWmndLH6MMaxrEtcw7WQbPPaYIhNl9-hrMmhWZj3ZRccm4uzVjroTT9EH1pptT8vmzJK9qOQ_wGvtnZGFOBx-hBsGOBJ8t7gj6_O_20ft9uPp6dr99uWieonFoCXjAVdM81hU4KRSFIzfogoHrsLATAyvZBa6g9S7mnUgeiKMMYeFDsBD0_6O7HVMxyimKokoQwjQWpiPMDwie7Nfs87Gz-ZZIdzN9GyhfG5mlwIxgOHlMvbcc44YIQzT1TjEjRhzrY0ar1Zpk29zvwDuKU7XhH9O5PHL6ai_TDdJoIoWQVeLkI5PR9hjKZ3VBcvbyNkObFt8aa8Ap98Q_0_9vxA8rlVEqGcGOGYHMVj2uWuYqHWeJRac9uL3JDus4D-wPLP7fs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761138051</pqid></control><display><type>article</type><title>Cell-surface protein YwfG of Lactococcus lactis binds to α-1,2-linked mannose</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tsuchiya, Wataru ; Fujimoto, Zui ; Inagaki, Noritoshi ; Nakagawa, Hiroyuki ; Tanaka, Miwa ; Kimoto-Nira, Hiromi ; Yamazaki, Toshimasa ; Suzuki, Chise</creator><contributor>Balogun, Emmanuel Oluwadare</contributor><creatorcontrib>Tsuchiya, Wataru ; Fujimoto, Zui ; Inagaki, Noritoshi ; Nakagawa, Hiroyuki ; Tanaka, Miwa ; Kimoto-Nira, Hiromi ; Yamazaki, Toshimasa ; Suzuki, Chise ; Balogun, Emmanuel Oluwadare</creatorcontrib><description>Lactococcus lactis strains are used as starter cultures in the production of fermented dairy and vegetable foods, but the species also occurs in other niches such as plant material. Lactococcus lactis subsp. lactis G50 (G50) is a plant-derived strain and potential candidate probiotics. Western blotting of cell-wall proteins using antibodies generated against whole G50 cells detected a 120-kDa protein. MALDI-TOF MS analysis identified it as YwfG, a Leu-Pro-any-Thr-Gly cell-wall-anchor-domain-containing protein. Based on a predicted domain structure, a recombinant YwfG variant covering the N-terminal half (aa 28-511) of YwfG (YwfG28-511) was crystallized and the crystal structure was determined. The structure consisted of an L-type lectin domain, a mucin-binding protein domain, and a mucus-binding protein repeat. Recombinant YwfG variants containing combinations of these domains (YwfG28-270, YwfG28-336, YwfG28-511, MubR4) were prepared and their interactions with monosaccharides were examined by isothermal titration calorimetry; the only interaction observed was between YwfG28-270, which contained the L-type lectin domain, and d-mannose. Among four mannobioses, α-1,2-mannobiose had the highest affinity for YwfG28-270 (dissociation constant = 34 μM). YwfG28-270 also interacted with yeast mannoproteins and yeast mannan. Soaking of the crystals of YwfG28-511 with mannose or α-1,2-mannobiose revealed that both sugars bound to the L-type lectin domain in a similar manner, although the presence of the mucin-binding protein domain and the mucus-binding protein repeat within the recombinant protein inhibited the interaction between the L-type lectin domain and mannose residues. Three of the YwfG variants (except MubR4) induced aggregation of yeast cells. Strain G50 also induced aggregation of yeast cells, which was abolished by deletion of ywfG from G50, suggesting that surface YwfG contributes to the interaction with yeast cells. These findings provide new structural and functional insights into the interaction between L. lactis and its ecological niche via binding of the cell-surface protein YwfG with mannose.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0273955</identifier><identifier>PMID: 36602978</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agglomeration ; Antibodies ; Bacteria ; Biology and Life Sciences ; Calorimetry ; Cell surface ; Crystal structure ; Crystallization ; Crystals ; Dissociation ; Ecological niches ; Fermentation ; Fermented milk products ; Glucose ; Gram-positive bacteria ; Lactococcus lactis ; Lactococcus lactis - genetics ; Lactococcus lactis - metabolism ; Lectins - metabolism ; Mannan ; Mannoproteins ; Mannose ; Mannose - metabolism ; Medicine and Health Sciences ; Membrane Proteins - metabolism ; Monosaccharides ; Mucin ; Mucins - metabolism ; Mucus ; Niches ; Physical Sciences ; Plants ; Probiotics ; Proteins ; Research and Analysis Methods ; Saccharomyces cerevisiae ; Starter cultures ; Structure-function relationships ; Sugar ; Titration ; Titration calorimetry ; Western blotting ; Yeast ; Yeasts</subject><ispartof>PloS one, 2023-01, Vol.18 (1), p.e0273955-e0273955</ispartof><rights>Copyright: © 2023 Tsuchiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2023 Tsuchiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Tsuchiya et al 2023 Tsuchiya et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-1ed537f8b482e96572ef683bf5e0539aefe07abf88ebf5a24d268f172300e4f73</citedby><cites>FETCH-LOGICAL-c526t-1ed537f8b482e96572ef683bf5e0539aefe07abf88ebf5a24d268f172300e4f73</cites><orcidid>0000-0002-3551-6854 ; 0000-0001-7148-8101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815576/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815576/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36602978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Balogun, Emmanuel Oluwadare</contributor><creatorcontrib>Tsuchiya, Wataru</creatorcontrib><creatorcontrib>Fujimoto, Zui</creatorcontrib><creatorcontrib>Inagaki, Noritoshi</creatorcontrib><creatorcontrib>Nakagawa, Hiroyuki</creatorcontrib><creatorcontrib>Tanaka, Miwa</creatorcontrib><creatorcontrib>Kimoto-Nira, Hiromi</creatorcontrib><creatorcontrib>Yamazaki, Toshimasa</creatorcontrib><creatorcontrib>Suzuki, Chise</creatorcontrib><title>Cell-surface protein YwfG of Lactococcus lactis binds to α-1,2-linked mannose</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Lactococcus lactis strains are used as starter cultures in the production of fermented dairy and vegetable foods, but the species also occurs in other niches such as plant material. Lactococcus lactis subsp. lactis G50 (G50) is a plant-derived strain and potential candidate probiotics. Western blotting of cell-wall proteins using antibodies generated against whole G50 cells detected a 120-kDa protein. MALDI-TOF MS analysis identified it as YwfG, a Leu-Pro-any-Thr-Gly cell-wall-anchor-domain-containing protein. Based on a predicted domain structure, a recombinant YwfG variant covering the N-terminal half (aa 28-511) of YwfG (YwfG28-511) was crystallized and the crystal structure was determined. The structure consisted of an L-type lectin domain, a mucin-binding protein domain, and a mucus-binding protein repeat. Recombinant YwfG variants containing combinations of these domains (YwfG28-270, YwfG28-336, YwfG28-511, MubR4) were prepared and their interactions with monosaccharides were examined by isothermal titration calorimetry; the only interaction observed was between YwfG28-270, which contained the L-type lectin domain, and d-mannose. Among four mannobioses, α-1,2-mannobiose had the highest affinity for YwfG28-270 (dissociation constant = 34 μM). YwfG28-270 also interacted with yeast mannoproteins and yeast mannan. Soaking of the crystals of YwfG28-511 with mannose or α-1,2-mannobiose revealed that both sugars bound to the L-type lectin domain in a similar manner, although the presence of the mucin-binding protein domain and the mucus-binding protein repeat within the recombinant protein inhibited the interaction between the L-type lectin domain and mannose residues. Three of the YwfG variants (except MubR4) induced aggregation of yeast cells. Strain G50 also induced aggregation of yeast cells, which was abolished by deletion of ywfG from G50, suggesting that surface YwfG contributes to the interaction with yeast cells. These findings provide new structural and functional insights into the interaction between L. lactis and its ecological niche via binding of the cell-surface protein YwfG with mannose.</description><subject>Agglomeration</subject><subject>Antibodies</subject><subject>Bacteria</subject><subject>Biology and Life Sciences</subject><subject>Calorimetry</subject><subject>Cell surface</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Dissociation</subject><subject>Ecological niches</subject><subject>Fermentation</subject><subject>Fermented milk products</subject><subject>Glucose</subject><subject>Gram-positive bacteria</subject><subject>Lactococcus lactis</subject><subject>Lactococcus lactis - genetics</subject><subject>Lactococcus lactis - metabolism</subject><subject>Lectins - metabolism</subject><subject>Mannan</subject><subject>Mannoproteins</subject><subject>Mannose</subject><subject>Mannose - metabolism</subject><subject>Medicine and Health Sciences</subject><subject>Membrane Proteins - metabolism</subject><subject>Monosaccharides</subject><subject>Mucin</subject><subject>Mucins - metabolism</subject><subject>Mucus</subject><subject>Niches</subject><subject>Physical Sciences</subject><subject>Plants</subject><subject>Probiotics</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae</subject><subject>Starter cultures</subject><subject>Structure-function relationships</subject><subject>Sugar</subject><subject>Titration</subject><subject>Titration calorimetry</subject><subject>Western blotting</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUstuFDEQtBCIhMAfIBiJCwdm8dueCxJahRBpBRc4cLI8djvMMmsv9gyIz8qP8E047CRKECe32lXV1a1C6CnBK8IUeb1Nc452XO1ThBWminVC3EPHpGO0lRSz-7fqI_SolC3GgmkpH6IjJiWmndLH6MMaxrEtcw7WQbPPaYIhNl9-hrMmhWZj3ZRccm4uzVjroTT9EH1pptT8vmzJK9qOQ_wGvtnZGFOBx-hBsGOBJ8t7gj6_O_20ft9uPp6dr99uWieonFoCXjAVdM81hU4KRSFIzfogoHrsLATAyvZBa6g9S7mnUgeiKMMYeFDsBD0_6O7HVMxyimKokoQwjQWpiPMDwie7Nfs87Gz-ZZIdzN9GyhfG5mlwIxgOHlMvbcc44YIQzT1TjEjRhzrY0ar1Zpk29zvwDuKU7XhH9O5PHL6ai_TDdJoIoWQVeLkI5PR9hjKZ3VBcvbyNkObFt8aa8Ap98Q_0_9vxA8rlVEqGcGOGYHMVj2uWuYqHWeJRac9uL3JDus4D-wPLP7fs</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Tsuchiya, Wataru</creator><creator>Fujimoto, Zui</creator><creator>Inagaki, Noritoshi</creator><creator>Nakagawa, Hiroyuki</creator><creator>Tanaka, Miwa</creator><creator>Kimoto-Nira, Hiromi</creator><creator>Yamazaki, Toshimasa</creator><creator>Suzuki, Chise</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3551-6854</orcidid><orcidid>https://orcid.org/0000-0001-7148-8101</orcidid></search><sort><creationdate>20230101</creationdate><title>Cell-surface protein YwfG of Lactococcus lactis binds to α-1,2-linked mannose</title><author>Tsuchiya, Wataru ; Fujimoto, Zui ; Inagaki, Noritoshi ; Nakagawa, Hiroyuki ; Tanaka, Miwa ; Kimoto-Nira, Hiromi ; Yamazaki, Toshimasa ; Suzuki, Chise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-1ed537f8b482e96572ef683bf5e0539aefe07abf88ebf5a24d268f172300e4f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agglomeration</topic><topic>Antibodies</topic><topic>Bacteria</topic><topic>Biology and Life Sciences</topic><topic>Calorimetry</topic><topic>Cell surface</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Dissociation</topic><topic>Ecological niches</topic><topic>Fermentation</topic><topic>Fermented milk products</topic><topic>Glucose</topic><topic>Gram-positive bacteria</topic><topic>Lactococcus lactis</topic><topic>Lactococcus lactis - genetics</topic><topic>Lactococcus lactis - metabolism</topic><topic>Lectins - metabolism</topic><topic>Mannan</topic><topic>Mannoproteins</topic><topic>Mannose</topic><topic>Mannose - metabolism</topic><topic>Medicine and Health Sciences</topic><topic>Membrane Proteins - metabolism</topic><topic>Monosaccharides</topic><topic>Mucin</topic><topic>Mucins - metabolism</topic><topic>Mucus</topic><topic>Niches</topic><topic>Physical Sciences</topic><topic>Plants</topic><topic>Probiotics</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae</topic><topic>Starter cultures</topic><topic>Structure-function relationships</topic><topic>Sugar</topic><topic>Titration</topic><topic>Titration calorimetry</topic><topic>Western blotting</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuchiya, Wataru</creatorcontrib><creatorcontrib>Fujimoto, Zui</creatorcontrib><creatorcontrib>Inagaki, Noritoshi</creatorcontrib><creatorcontrib>Nakagawa, Hiroyuki</creatorcontrib><creatorcontrib>Tanaka, Miwa</creatorcontrib><creatorcontrib>Kimoto-Nira, Hiromi</creatorcontrib><creatorcontrib>Yamazaki, Toshimasa</creatorcontrib><creatorcontrib>Suzuki, Chise</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuchiya, Wataru</au><au>Fujimoto, Zui</au><au>Inagaki, Noritoshi</au><au>Nakagawa, Hiroyuki</au><au>Tanaka, Miwa</au><au>Kimoto-Nira, Hiromi</au><au>Yamazaki, Toshimasa</au><au>Suzuki, Chise</au><au>Balogun, Emmanuel Oluwadare</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-surface protein YwfG of Lactococcus lactis binds to α-1,2-linked mannose</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>18</volume><issue>1</issue><spage>e0273955</spage><epage>e0273955</epage><pages>e0273955-e0273955</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Lactococcus lactis strains are used as starter cultures in the production of fermented dairy and vegetable foods, but the species also occurs in other niches such as plant material. Lactococcus lactis subsp. lactis G50 (G50) is a plant-derived strain and potential candidate probiotics. Western blotting of cell-wall proteins using antibodies generated against whole G50 cells detected a 120-kDa protein. MALDI-TOF MS analysis identified it as YwfG, a Leu-Pro-any-Thr-Gly cell-wall-anchor-domain-containing protein. Based on a predicted domain structure, a recombinant YwfG variant covering the N-terminal half (aa 28-511) of YwfG (YwfG28-511) was crystallized and the crystal structure was determined. The structure consisted of an L-type lectin domain, a mucin-binding protein domain, and a mucus-binding protein repeat. Recombinant YwfG variants containing combinations of these domains (YwfG28-270, YwfG28-336, YwfG28-511, MubR4) were prepared and their interactions with monosaccharides were examined by isothermal titration calorimetry; the only interaction observed was between YwfG28-270, which contained the L-type lectin domain, and d-mannose. Among four mannobioses, α-1,2-mannobiose had the highest affinity for YwfG28-270 (dissociation constant = 34 μM). YwfG28-270 also interacted with yeast mannoproteins and yeast mannan. Soaking of the crystals of YwfG28-511 with mannose or α-1,2-mannobiose revealed that both sugars bound to the L-type lectin domain in a similar manner, although the presence of the mucin-binding protein domain and the mucus-binding protein repeat within the recombinant protein inhibited the interaction between the L-type lectin domain and mannose residues. Three of the YwfG variants (except MubR4) induced aggregation of yeast cells. Strain G50 also induced aggregation of yeast cells, which was abolished by deletion of ywfG from G50, suggesting that surface YwfG contributes to the interaction with yeast cells. These findings provide new structural and functional insights into the interaction between L. lactis and its ecological niche via binding of the cell-surface protein YwfG with mannose.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36602978</pmid><doi>10.1371/journal.pone.0273955</doi><orcidid>https://orcid.org/0000-0002-3551-6854</orcidid><orcidid>https://orcid.org/0000-0001-7148-8101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-01, Vol.18 (1), p.e0273955-e0273955
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2761138051
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Agglomeration
Antibodies
Bacteria
Biology and Life Sciences
Calorimetry
Cell surface
Crystal structure
Crystallization
Crystals
Dissociation
Ecological niches
Fermentation
Fermented milk products
Glucose
Gram-positive bacteria
Lactococcus lactis
Lactococcus lactis - genetics
Lactococcus lactis - metabolism
Lectins - metabolism
Mannan
Mannoproteins
Mannose
Mannose - metabolism
Medicine and Health Sciences
Membrane Proteins - metabolism
Monosaccharides
Mucin
Mucins - metabolism
Mucus
Niches
Physical Sciences
Plants
Probiotics
Proteins
Research and Analysis Methods
Saccharomyces cerevisiae
Starter cultures
Structure-function relationships
Sugar
Titration
Titration calorimetry
Western blotting
Yeast
Yeasts
title Cell-surface protein YwfG of Lactococcus lactis binds to α-1,2-linked mannose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-surface%20protein%20YwfG%20of%20Lactococcus%20lactis%20binds%20to%20%CE%B1-1,2-linked%20mannose&rft.jtitle=PloS%20one&rft.au=Tsuchiya,%20Wataru&rft.date=2023-01-01&rft.volume=18&rft.issue=1&rft.spage=e0273955&rft.epage=e0273955&rft.pages=e0273955-e0273955&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0273955&rft_dat=%3Cproquest_plos_%3E2761180814%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761138051&rft_id=info:pmid/36602978&rft_doaj_id=oai_doaj_org_article_4ed02d6a9341451184d373165bf4d2c2&rfr_iscdi=true