Epstein-Barr virus-induced gene 3 commits human mesenchymal stem cells to differentiate into chondrocytes via endoplasmic reticulum stress sensor

Mesenchymal stem cells (MSC) can differentiate into chondrocytes. Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed during chondrogenic differentiation and can be produced by MSC. EBI3 is also a subunit of interleukin (IL)-27 and IL-35, and it accumulates in the endoplasmic reticu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-12, Vol.17 (12), p.e0279584
Hauptverfasser: Zhang, Tong, Yamagata, Kaoru, Iwata, Shigeru, Sonomoto, Koshiro, Trimova, Gulzhan, Nguyen, Anh Phuong, Hao, He, Shan, Yu, Nguyen, Mai-Phuong, Nakayamada, Shingo, Tanaka, Yoshiya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e0279584
container_title PloS one
container_volume 17
creator Zhang, Tong
Yamagata, Kaoru
Iwata, Shigeru
Sonomoto, Koshiro
Trimova, Gulzhan
Nguyen, Anh Phuong
Hao, He
Shan, Yu
Nguyen, Mai-Phuong
Nakayamada, Shingo
Tanaka, Yoshiya
description Mesenchymal stem cells (MSC) can differentiate into chondrocytes. Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed during chondrogenic differentiation and can be produced by MSC. EBI3 is also a subunit of interleukin (IL)-27 and IL-35, and it accumulates in the endoplasmic reticulum (ER) when its partners, such as IL-27 p28 and IL-35 p35, are insufficient. ER stress induced by protein accumulation is responsible for chondrogenic differentiation. However, the role of EBI3 and its relevance to the ER stress in chondrogenic differentiation of MSC have never been addressed. Here, we demonstrate that EBI3 protein is expressed in the early stage of chondrogenic differentiation of MSC. Additionally, knockdown, overexpression, or induction of EBI3 through IL-1β inhibits chondrogenesis. We show that EBI3 localizes and accumulates in the ER of MSC after overexpression or induction by IL-1β and TNF-α, whereas ER stress inhibitor 4-phenylbutyric acid decreases its accumulation in MSC. Moreover, EBI3 modulates ER stress sensor inositol-requiring enzyme 1 α (IRE1α) after induced by IL-1β, and MSC-like cells coexpress EBI3 and IRE1α in rheumatoid arthritis (RA) synovial tissue. Altogether, these data demonstrate that intracellular EBI3 commits to chondrogenic differentiation by regulating ER stress sensor IRE1α.
doi_str_mv 10.1371/journal.pone.0279584
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2757027714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730926275</galeid><doaj_id>oai_doaj_org_article_dc26cdf01e0a4c9991ed11ad66e6f1a5</doaj_id><sourcerecordid>A730926275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-49a32752fae5b26e6b79683e30616549e8c3f557643a0f01273f1199a0fe877e3</originalsourceid><addsrcrecordid>eNqNk9-K1DAUxoso7rr6BqIBQfCiY9O0SXMjrMuqAwsL_rsNmfR0JkObjEm6OI_hG3vW6S5TUJBetD39fV9OvuZk2XNaLCgT9O3Wj8HpfrHzDhZFKWTdVA-yUypZmfOyYA-Pnk-yJzFui6JmDeePsxPG66phdXWa_brcxQTW5e91COTGhjHm1rWjgZaswQFhxPhhsCmSzThoRwaI4MxmP-ieoHIgBvo-kuRJa7sOArhkdQJiHZbMxrs2eLNPENFcE3Ct3_U6DtaQAMmasR8H9AkQI0Hj6MPT7FGn-wjPpvtZ9u3D5deLT_nV9cflxflVbrgsU15JzUpRl52GelVy4CshecOAFZzi7iQ0hnV1LXjFdNEVtBSso1RKfIFGCGBn2cuD7673UU1pRoWeAtMUtEJieSBar7dqF-ygw155bdWfgg9rpQPuoQfVmpKbFpeBQldGSkmhpVS3HBvrqK7R69202rgaoDUYU9D9zHT-xdmNWvsbJYVoeCHQ4NVkEPyPEWL6R8sTtdbYlXWdRzMz2GjUuWCFLDnCSC3-QuHVAv4YPE-dxfpM8GYmQCbBz7TWY4xq-eXz_7PX3-fs6yN2A7pPm-j7MVnv4hysDqAJPsYA3X1ytFC343CXhrodBzWNA8peHKd-L7o7_-w3XwIIYg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757027714</pqid></control><display><type>article</type><title>Epstein-Barr virus-induced gene 3 commits human mesenchymal stem cells to differentiate into chondrocytes via endoplasmic reticulum stress sensor</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Tong ; Yamagata, Kaoru ; Iwata, Shigeru ; Sonomoto, Koshiro ; Trimova, Gulzhan ; Nguyen, Anh Phuong ; Hao, He ; Shan, Yu ; Nguyen, Mai-Phuong ; Nakayamada, Shingo ; Tanaka, Yoshiya</creator><contributor>Trajkovic, Vladimir</contributor><creatorcontrib>Zhang, Tong ; Yamagata, Kaoru ; Iwata, Shigeru ; Sonomoto, Koshiro ; Trimova, Gulzhan ; Nguyen, Anh Phuong ; Hao, He ; Shan, Yu ; Nguyen, Mai-Phuong ; Nakayamada, Shingo ; Tanaka, Yoshiya ; Trajkovic, Vladimir</creatorcontrib><description>Mesenchymal stem cells (MSC) can differentiate into chondrocytes. Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed during chondrogenic differentiation and can be produced by MSC. EBI3 is also a subunit of interleukin (IL)-27 and IL-35, and it accumulates in the endoplasmic reticulum (ER) when its partners, such as IL-27 p28 and IL-35 p35, are insufficient. ER stress induced by protein accumulation is responsible for chondrogenic differentiation. However, the role of EBI3 and its relevance to the ER stress in chondrogenic differentiation of MSC have never been addressed. Here, we demonstrate that EBI3 protein is expressed in the early stage of chondrogenic differentiation of MSC. Additionally, knockdown, overexpression, or induction of EBI3 through IL-1β inhibits chondrogenesis. We show that EBI3 localizes and accumulates in the ER of MSC after overexpression or induction by IL-1β and TNF-α, whereas ER stress inhibitor 4-phenylbutyric acid decreases its accumulation in MSC. Moreover, EBI3 modulates ER stress sensor inositol-requiring enzyme 1 α (IRE1α) after induced by IL-1β, and MSC-like cells coexpress EBI3 and IRE1α in rheumatoid arthritis (RA) synovial tissue. Altogether, these data demonstrate that intracellular EBI3 commits to chondrogenic differentiation by regulating ER stress sensor IRE1α.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0279584</identifier><identifier>PMID: 36548354</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accumulation ; Analysis ; Antibodies ; Arthritis ; Biology and Life Sciences ; Bone marrow ; Cartilage ; Cell cycle ; Cell differentiation ; Cell Differentiation - genetics ; Chondrocytes ; Chondrocytes - cytology ; Chondrogenesis ; Chondrogenesis - genetics ; Control ; Cytokines ; Differentiation ; EBI3 protein ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress - genetics ; Endoribonucleases - genetics ; Endoribonucleases - metabolism ; Epstein-Barr virus ; Health aspects ; Humans ; Identification and classification ; IL-1β ; Inositol ; Inositols ; Interleukin 27 ; Interleukins ; Interleukins - genetics ; Interleukins - physiology ; Kinases ; Medicine and Health Sciences ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Minor Histocompatibility Antigens - genetics ; Minor Histocompatibility Antigens - physiology ; Phenylbutyric acid ; Prevention ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Proteins ; Research and Analysis Methods ; Rheumatoid arthritis ; Risk factors ; Sensors ; Stem cells ; Stress ; Stress (Physiology) ; Tumor necrosis factor-α ; Viruses</subject><ispartof>PloS one, 2022-12, Vol.17 (12), p.e0279584</ispartof><rights>Copyright: © 2022 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Zhang et al 2022 Zhang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-49a32752fae5b26e6b79683e30616549e8c3f557643a0f01273f1199a0fe877e3</citedby><cites>FETCH-LOGICAL-c692t-49a32752fae5b26e6b79683e30616549e8c3f557643a0f01273f1199a0fe877e3</cites><orcidid>0000-0001-9419-5766 ; 0000-0002-0807-7139 ; 0000-0003-3483-2668 ; 0000-0003-4029-443X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778607/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778607/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36548354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Trajkovic, Vladimir</contributor><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Yamagata, Kaoru</creatorcontrib><creatorcontrib>Iwata, Shigeru</creatorcontrib><creatorcontrib>Sonomoto, Koshiro</creatorcontrib><creatorcontrib>Trimova, Gulzhan</creatorcontrib><creatorcontrib>Nguyen, Anh Phuong</creatorcontrib><creatorcontrib>Hao, He</creatorcontrib><creatorcontrib>Shan, Yu</creatorcontrib><creatorcontrib>Nguyen, Mai-Phuong</creatorcontrib><creatorcontrib>Nakayamada, Shingo</creatorcontrib><creatorcontrib>Tanaka, Yoshiya</creatorcontrib><title>Epstein-Barr virus-induced gene 3 commits human mesenchymal stem cells to differentiate into chondrocytes via endoplasmic reticulum stress sensor</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mesenchymal stem cells (MSC) can differentiate into chondrocytes. Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed during chondrogenic differentiation and can be produced by MSC. EBI3 is also a subunit of interleukin (IL)-27 and IL-35, and it accumulates in the endoplasmic reticulum (ER) when its partners, such as IL-27 p28 and IL-35 p35, are insufficient. ER stress induced by protein accumulation is responsible for chondrogenic differentiation. However, the role of EBI3 and its relevance to the ER stress in chondrogenic differentiation of MSC have never been addressed. Here, we demonstrate that EBI3 protein is expressed in the early stage of chondrogenic differentiation of MSC. Additionally, knockdown, overexpression, or induction of EBI3 through IL-1β inhibits chondrogenesis. We show that EBI3 localizes and accumulates in the ER of MSC after overexpression or induction by IL-1β and TNF-α, whereas ER stress inhibitor 4-phenylbutyric acid decreases its accumulation in MSC. Moreover, EBI3 modulates ER stress sensor inositol-requiring enzyme 1 α (IRE1α) after induced by IL-1β, and MSC-like cells coexpress EBI3 and IRE1α in rheumatoid arthritis (RA) synovial tissue. Altogether, these data demonstrate that intracellular EBI3 commits to chondrogenic differentiation by regulating ER stress sensor IRE1α.</description><subject>Accumulation</subject><subject>Analysis</subject><subject>Antibodies</subject><subject>Arthritis</subject><subject>Biology and Life Sciences</subject><subject>Bone marrow</subject><subject>Cartilage</subject><subject>Cell cycle</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Chondrogenesis</subject><subject>Chondrogenesis - genetics</subject><subject>Control</subject><subject>Cytokines</subject><subject>Differentiation</subject><subject>EBI3 protein</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress - genetics</subject><subject>Endoribonucleases - genetics</subject><subject>Endoribonucleases - metabolism</subject><subject>Epstein-Barr virus</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>IL-1β</subject><subject>Inositol</subject><subject>Inositols</subject><subject>Interleukin 27</subject><subject>Interleukins</subject><subject>Interleukins - genetics</subject><subject>Interleukins - physiology</subject><subject>Kinases</subject><subject>Medicine and Health Sciences</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Minor Histocompatibility Antigens - genetics</subject><subject>Minor Histocompatibility Antigens - physiology</subject><subject>Phenylbutyric acid</subject><subject>Prevention</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Rheumatoid arthritis</subject><subject>Risk factors</subject><subject>Sensors</subject><subject>Stem cells</subject><subject>Stress</subject><subject>Stress (Physiology)</subject><subject>Tumor necrosis factor-α</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-K1DAUxoso7rr6BqIBQfCiY9O0SXMjrMuqAwsL_rsNmfR0JkObjEm6OI_hG3vW6S5TUJBetD39fV9OvuZk2XNaLCgT9O3Wj8HpfrHzDhZFKWTdVA-yUypZmfOyYA-Pnk-yJzFui6JmDeePsxPG66phdXWa_brcxQTW5e91COTGhjHm1rWjgZaswQFhxPhhsCmSzThoRwaI4MxmP-ieoHIgBvo-kuRJa7sOArhkdQJiHZbMxrs2eLNPENFcE3Ct3_U6DtaQAMmasR8H9AkQI0Hj6MPT7FGn-wjPpvtZ9u3D5deLT_nV9cflxflVbrgsU15JzUpRl52GelVy4CshecOAFZzi7iQ0hnV1LXjFdNEVtBSso1RKfIFGCGBn2cuD7673UU1pRoWeAtMUtEJieSBar7dqF-ygw155bdWfgg9rpQPuoQfVmpKbFpeBQldGSkmhpVS3HBvrqK7R69202rgaoDUYU9D9zHT-xdmNWvsbJYVoeCHQ4NVkEPyPEWL6R8sTtdbYlXWdRzMz2GjUuWCFLDnCSC3-QuHVAv4YPE-dxfpM8GYmQCbBz7TWY4xq-eXz_7PX3-fs6yN2A7pPm-j7MVnv4hysDqAJPsYA3X1ytFC343CXhrodBzWNA8peHKd-L7o7_-w3XwIIYg</recordid><startdate>20221222</startdate><enddate>20221222</enddate><creator>Zhang, Tong</creator><creator>Yamagata, Kaoru</creator><creator>Iwata, Shigeru</creator><creator>Sonomoto, Koshiro</creator><creator>Trimova, Gulzhan</creator><creator>Nguyen, Anh Phuong</creator><creator>Hao, He</creator><creator>Shan, Yu</creator><creator>Nguyen, Mai-Phuong</creator><creator>Nakayamada, Shingo</creator><creator>Tanaka, Yoshiya</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9419-5766</orcidid><orcidid>https://orcid.org/0000-0002-0807-7139</orcidid><orcidid>https://orcid.org/0000-0003-3483-2668</orcidid><orcidid>https://orcid.org/0000-0003-4029-443X</orcidid></search><sort><creationdate>20221222</creationdate><title>Epstein-Barr virus-induced gene 3 commits human mesenchymal stem cells to differentiate into chondrocytes via endoplasmic reticulum stress sensor</title><author>Zhang, Tong ; Yamagata, Kaoru ; Iwata, Shigeru ; Sonomoto, Koshiro ; Trimova, Gulzhan ; Nguyen, Anh Phuong ; Hao, He ; Shan, Yu ; Nguyen, Mai-Phuong ; Nakayamada, Shingo ; Tanaka, Yoshiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-49a32752fae5b26e6b79683e30616549e8c3f557643a0f01273f1199a0fe877e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accumulation</topic><topic>Analysis</topic><topic>Antibodies</topic><topic>Arthritis</topic><topic>Biology and Life Sciences</topic><topic>Bone marrow</topic><topic>Cartilage</topic><topic>Cell cycle</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Chondrogenesis</topic><topic>Chondrogenesis - genetics</topic><topic>Control</topic><topic>Cytokines</topic><topic>Differentiation</topic><topic>EBI3 protein</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress - genetics</topic><topic>Endoribonucleases - genetics</topic><topic>Endoribonucleases - metabolism</topic><topic>Epstein-Barr virus</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>IL-1β</topic><topic>Inositol</topic><topic>Inositols</topic><topic>Interleukin 27</topic><topic>Interleukins</topic><topic>Interleukins - genetics</topic><topic>Interleukins - physiology</topic><topic>Kinases</topic><topic>Medicine and Health Sciences</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Minor Histocompatibility Antigens - genetics</topic><topic>Minor Histocompatibility Antigens - physiology</topic><topic>Phenylbutyric acid</topic><topic>Prevention</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Rheumatoid arthritis</topic><topic>Risk factors</topic><topic>Sensors</topic><topic>Stem cells</topic><topic>Stress</topic><topic>Stress (Physiology)</topic><topic>Tumor necrosis factor-α</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Yamagata, Kaoru</creatorcontrib><creatorcontrib>Iwata, Shigeru</creatorcontrib><creatorcontrib>Sonomoto, Koshiro</creatorcontrib><creatorcontrib>Trimova, Gulzhan</creatorcontrib><creatorcontrib>Nguyen, Anh Phuong</creatorcontrib><creatorcontrib>Hao, He</creatorcontrib><creatorcontrib>Shan, Yu</creatorcontrib><creatorcontrib>Nguyen, Mai-Phuong</creatorcontrib><creatorcontrib>Nakayamada, Shingo</creatorcontrib><creatorcontrib>Tanaka, Yoshiya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tong</au><au>Yamagata, Kaoru</au><au>Iwata, Shigeru</au><au>Sonomoto, Koshiro</au><au>Trimova, Gulzhan</au><au>Nguyen, Anh Phuong</au><au>Hao, He</au><au>Shan, Yu</au><au>Nguyen, Mai-Phuong</au><au>Nakayamada, Shingo</au><au>Tanaka, Yoshiya</au><au>Trajkovic, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epstein-Barr virus-induced gene 3 commits human mesenchymal stem cells to differentiate into chondrocytes via endoplasmic reticulum stress sensor</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-12-22</date><risdate>2022</risdate><volume>17</volume><issue>12</issue><spage>e0279584</spage><pages>e0279584-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mesenchymal stem cells (MSC) can differentiate into chondrocytes. Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed during chondrogenic differentiation and can be produced by MSC. EBI3 is also a subunit of interleukin (IL)-27 and IL-35, and it accumulates in the endoplasmic reticulum (ER) when its partners, such as IL-27 p28 and IL-35 p35, are insufficient. ER stress induced by protein accumulation is responsible for chondrogenic differentiation. However, the role of EBI3 and its relevance to the ER stress in chondrogenic differentiation of MSC have never been addressed. Here, we demonstrate that EBI3 protein is expressed in the early stage of chondrogenic differentiation of MSC. Additionally, knockdown, overexpression, or induction of EBI3 through IL-1β inhibits chondrogenesis. We show that EBI3 localizes and accumulates in the ER of MSC after overexpression or induction by IL-1β and TNF-α, whereas ER stress inhibitor 4-phenylbutyric acid decreases its accumulation in MSC. Moreover, EBI3 modulates ER stress sensor inositol-requiring enzyme 1 α (IRE1α) after induced by IL-1β, and MSC-like cells coexpress EBI3 and IRE1α in rheumatoid arthritis (RA) synovial tissue. Altogether, these data demonstrate that intracellular EBI3 commits to chondrogenic differentiation by regulating ER stress sensor IRE1α.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36548354</pmid><doi>10.1371/journal.pone.0279584</doi><tpages>e0279584</tpages><orcidid>https://orcid.org/0000-0001-9419-5766</orcidid><orcidid>https://orcid.org/0000-0002-0807-7139</orcidid><orcidid>https://orcid.org/0000-0003-3483-2668</orcidid><orcidid>https://orcid.org/0000-0003-4029-443X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-12, Vol.17 (12), p.e0279584
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2757027714
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accumulation
Analysis
Antibodies
Arthritis
Biology and Life Sciences
Bone marrow
Cartilage
Cell cycle
Cell differentiation
Cell Differentiation - genetics
Chondrocytes
Chondrocytes - cytology
Chondrogenesis
Chondrogenesis - genetics
Control
Cytokines
Differentiation
EBI3 protein
Endoplasmic reticulum
Endoplasmic Reticulum Stress - genetics
Endoribonucleases - genetics
Endoribonucleases - metabolism
Epstein-Barr virus
Health aspects
Humans
Identification and classification
IL-1β
Inositol
Inositols
Interleukin 27
Interleukins
Interleukins - genetics
Interleukins - physiology
Kinases
Medicine and Health Sciences
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Minor Histocompatibility Antigens - genetics
Minor Histocompatibility Antigens - physiology
Phenylbutyric acid
Prevention
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Proteins
Research and Analysis Methods
Rheumatoid arthritis
Risk factors
Sensors
Stem cells
Stress
Stress (Physiology)
Tumor necrosis factor-α
Viruses
title Epstein-Barr virus-induced gene 3 commits human mesenchymal stem cells to differentiate into chondrocytes via endoplasmic reticulum stress sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epstein-Barr%20virus-induced%20gene%203%20commits%20human%20mesenchymal%20stem%20cells%20to%20differentiate%20into%20chondrocytes%20via%20endoplasmic%20reticulum%20stress%20sensor&rft.jtitle=PloS%20one&rft.au=Zhang,%20Tong&rft.date=2022-12-22&rft.volume=17&rft.issue=12&rft.spage=e0279584&rft.pages=e0279584-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0279584&rft_dat=%3Cgale_plos_%3EA730926275%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757027714&rft_id=info:pmid/36548354&rft_galeid=A730926275&rft_doaj_id=oai_doaj_org_article_dc26cdf01e0a4c9991ed11ad66e6f1a5&rfr_iscdi=true