Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation

Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-11, Vol.18 (11), p.e1010628-e1010628
Hauptverfasser: Golden, Ryan, Delanois, Jean Erik, Sanda, Pavel, Bazhenov, Maxim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010628
container_issue 11
container_start_page e1010628
container_title PLoS computational biology
container_volume 18
creator Golden, Ryan
Delanois, Jean Erik
Sanda, Pavel
Bazhenov, Maxim
description Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning.
doi_str_mv 10.1371/journal.pcbi.1010628
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2755183665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728964252</galeid><doaj_id>oai_doaj_org_article_733c98bd377947868c93df236b8287f8</doaj_id><sourcerecordid>A728964252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-78e43162c4f2ede0b1f1355eb1d65e958f03ab2418bad9a1801f27283c24aa453</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEog_4BwgisYHFDLGd2M4Gqap4jFSBRGFtOc51xtOMHWynZf59HSatOqgblIWv7O-em3N0s-wVKpaIMPRh40ZvZb8cVGOWqEAFxfxJdoyqiiwYqfjTB_VRdhLCpihSWdPn2RGhpK5Lwo6zcNkDDPng4RpsDLmSUYbo3bA2KtfOdxCjsV1ubB4GczWVFkYv-3TEG-evQt7sJnA7Pcl844yNedhZOcSkcAOmW8fcQxoQ0gAZjbMvsmda9gFezudp9uvzp5_nXxcX37-szs8uFopSFBeMQ0kQxarUGFooGqQRqSpoUEsrqCuuCyIbXCLeyLaWiBdIY4Y5UbiUsqzIafZmrzv0Log5ryAwqyrECaUTsdoTrZMbMXizlX4nnDTi70WyL6RPPnoQjBBV86YljNUl45SrmrQaE9pwzJnmSevjPG1sttCq5DbFdCB6-GLNWnTuWtSUlaikSeDdLODd7xFCFFsTFPS9tODG6b8JR5zRAiX07T_o4-5mqpPJgLHapblqEhVnKaealrjCiVo-QqWvha1RzoI26f6g4f1BQ2Ii_ImdHEMQq8sf_8F-O2TLPau8C8GDvs8OFWJa-TuTYlp5Ma98anv9MPf7prsdJ7fF2v38</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755183665</pqid></control><display><type>article</type><title>Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Golden, Ryan ; Delanois, Jean Erik ; Sanda, Pavel ; Bazhenov, Maxim</creator><contributor>Bush, Daniel</contributor><creatorcontrib>Golden, Ryan ; Delanois, Jean Erik ; Sanda, Pavel ; Bazhenov, Maxim ; Bush, Daniel</creatorcontrib><description>Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010628</identifier><identifier>PMID: 36399437</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Artificial neural networks ; Biology and Life Sciences ; Brain ; Computer and Information Sciences ; Configurations ; Decision making ; Firing pattern ; Insects ; Learning ; Learning - physiology ; Manifolds ; Medicine and Health Sciences ; Memory ; Neural circuitry ; Neural networks ; Neural Networks, Computer ; Neurons ; Neurosciences ; Physiological aspects ; Psychological aspects ; Sleep ; Social Sciences ; Spiking ; Synapses ; Synaptic strength ; Training</subject><ispartof>PLoS computational biology, 2022-11, Vol.18 (11), p.e1010628-e1010628</ispartof><rights>Copyright: © 2022 Golden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Golden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Golden et al 2022 Golden et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-78e43162c4f2ede0b1f1355eb1d65e958f03ab2418bad9a1801f27283c24aa453</citedby><cites>FETCH-LOGICAL-c661t-78e43162c4f2ede0b1f1355eb1d65e958f03ab2418bad9a1801f27283c24aa453</cites><orcidid>0000-0001-7401-6046 ; 0000-0002-1936-0570 ; 0000-0002-8680-3239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674146/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674146/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36399437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bush, Daniel</contributor><creatorcontrib>Golden, Ryan</creatorcontrib><creatorcontrib>Delanois, Jean Erik</creatorcontrib><creatorcontrib>Sanda, Pavel</creatorcontrib><creatorcontrib>Bazhenov, Maxim</creatorcontrib><title>Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning.</description><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Computer and Information Sciences</subject><subject>Configurations</subject><subject>Decision making</subject><subject>Firing pattern</subject><subject>Insects</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Manifolds</subject><subject>Medicine and Health Sciences</subject><subject>Memory</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Psychological aspects</subject><subject>Sleep</subject><subject>Social Sciences</subject><subject>Spiking</subject><subject>Synapses</subject><subject>Synaptic strength</subject><subject>Training</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEog_4BwgisYHFDLGd2M4Gqap4jFSBRGFtOc51xtOMHWynZf59HSatOqgblIWv7O-em3N0s-wVKpaIMPRh40ZvZb8cVGOWqEAFxfxJdoyqiiwYqfjTB_VRdhLCpihSWdPn2RGhpK5Lwo6zcNkDDPng4RpsDLmSUYbo3bA2KtfOdxCjsV1ubB4GczWVFkYv-3TEG-evQt7sJnA7Pcl844yNedhZOcSkcAOmW8fcQxoQ0gAZjbMvsmda9gFezudp9uvzp5_nXxcX37-szs8uFopSFBeMQ0kQxarUGFooGqQRqSpoUEsrqCuuCyIbXCLeyLaWiBdIY4Y5UbiUsqzIafZmrzv0Log5ryAwqyrECaUTsdoTrZMbMXizlX4nnDTi70WyL6RPPnoQjBBV86YljNUl45SrmrQaE9pwzJnmSevjPG1sttCq5DbFdCB6-GLNWnTuWtSUlaikSeDdLODd7xFCFFsTFPS9tODG6b8JR5zRAiX07T_o4-5mqpPJgLHapblqEhVnKaealrjCiVo-QqWvha1RzoI26f6g4f1BQ2Ii_ImdHEMQq8sf_8F-O2TLPau8C8GDvs8OFWJa-TuTYlp5Ma98anv9MPf7prsdJ7fF2v38</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Golden, Ryan</creator><creator>Delanois, Jean Erik</creator><creator>Sanda, Pavel</creator><creator>Bazhenov, Maxim</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7401-6046</orcidid><orcidid>https://orcid.org/0000-0002-1936-0570</orcidid><orcidid>https://orcid.org/0000-0002-8680-3239</orcidid></search><sort><creationdate>20221101</creationdate><title>Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation</title><author>Golden, Ryan ; Delanois, Jean Erik ; Sanda, Pavel ; Bazhenov, Maxim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-78e43162c4f2ede0b1f1355eb1d65e958f03ab2418bad9a1801f27283c24aa453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Computer and Information Sciences</topic><topic>Configurations</topic><topic>Decision making</topic><topic>Firing pattern</topic><topic>Insects</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Manifolds</topic><topic>Medicine and Health Sciences</topic><topic>Memory</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Psychological aspects</topic><topic>Sleep</topic><topic>Social Sciences</topic><topic>Spiking</topic><topic>Synapses</topic><topic>Synaptic strength</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golden, Ryan</creatorcontrib><creatorcontrib>Delanois, Jean Erik</creatorcontrib><creatorcontrib>Sanda, Pavel</creatorcontrib><creatorcontrib>Bazhenov, Maxim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golden, Ryan</au><au>Delanois, Jean Erik</au><au>Sanda, Pavel</au><au>Bazhenov, Maxim</au><au>Bush, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>18</volume><issue>11</issue><spage>e1010628</spage><epage>e1010628</epage><pages>e1010628-e1010628</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36399437</pmid><doi>10.1371/journal.pcbi.1010628</doi><tpages>e1010628</tpages><orcidid>https://orcid.org/0000-0001-7401-6046</orcidid><orcidid>https://orcid.org/0000-0002-1936-0570</orcidid><orcidid>https://orcid.org/0000-0002-8680-3239</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2022-11, Vol.18 (11), p.e1010628-e1010628
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2755183665
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Artificial neural networks
Biology and Life Sciences
Brain
Computer and Information Sciences
Configurations
Decision making
Firing pattern
Insects
Learning
Learning - physiology
Manifolds
Medicine and Health Sciences
Memory
Neural circuitry
Neural networks
Neural Networks, Computer
Neurons
Neurosciences
Physiological aspects
Psychological aspects
Sleep
Social Sciences
Spiking
Synapses
Synaptic strength
Training
title Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sleep%20prevents%20catastrophic%20forgetting%20in%20spiking%20neural%20networks%20by%20forming%20a%20joint%20synaptic%20weight%20representation&rft.jtitle=PLoS%20computational%20biology&rft.au=Golden,%20Ryan&rft.date=2022-11-01&rft.volume=18&rft.issue=11&rft.spage=e1010628&rft.epage=e1010628&rft.pages=e1010628-e1010628&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010628&rft_dat=%3Cgale_plos_%3EA728964252%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755183665&rft_id=info:pmid/36399437&rft_galeid=A728964252&rft_doaj_id=oai_doaj_org_article_733c98bd377947868c93df236b8287f8&rfr_iscdi=true