Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation
Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2022-11, Vol.18 (11), p.e1010628-e1010628 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010628 |
---|---|
container_issue | 11 |
container_start_page | e1010628 |
container_title | PLoS computational biology |
container_volume | 18 |
creator | Golden, Ryan Delanois, Jean Erik Sanda, Pavel Bazhenov, Maxim |
description | Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning. |
doi_str_mv | 10.1371/journal.pcbi.1010628 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2755183665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728964252</galeid><doaj_id>oai_doaj_org_article_733c98bd377947868c93df236b8287f8</doaj_id><sourcerecordid>A728964252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-78e43162c4f2ede0b1f1355eb1d65e958f03ab2418bad9a1801f27283c24aa453</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEog_4BwgisYHFDLGd2M4Gqap4jFSBRGFtOc51xtOMHWynZf59HSatOqgblIWv7O-em3N0s-wVKpaIMPRh40ZvZb8cVGOWqEAFxfxJdoyqiiwYqfjTB_VRdhLCpihSWdPn2RGhpK5Lwo6zcNkDDPng4RpsDLmSUYbo3bA2KtfOdxCjsV1ubB4GczWVFkYv-3TEG-evQt7sJnA7Pcl844yNedhZOcSkcAOmW8fcQxoQ0gAZjbMvsmda9gFezudp9uvzp5_nXxcX37-szs8uFopSFBeMQ0kQxarUGFooGqQRqSpoUEsrqCuuCyIbXCLeyLaWiBdIY4Y5UbiUsqzIafZmrzv0Log5ryAwqyrECaUTsdoTrZMbMXizlX4nnDTi70WyL6RPPnoQjBBV86YljNUl45SrmrQaE9pwzJnmSevjPG1sttCq5DbFdCB6-GLNWnTuWtSUlaikSeDdLODd7xFCFFsTFPS9tODG6b8JR5zRAiX07T_o4-5mqpPJgLHapblqEhVnKaealrjCiVo-QqWvha1RzoI26f6g4f1BQ2Ii_ImdHEMQq8sf_8F-O2TLPau8C8GDvs8OFWJa-TuTYlp5Ma98anv9MPf7prsdJ7fF2v38</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755183665</pqid></control><display><type>article</type><title>Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Golden, Ryan ; Delanois, Jean Erik ; Sanda, Pavel ; Bazhenov, Maxim</creator><contributor>Bush, Daniel</contributor><creatorcontrib>Golden, Ryan ; Delanois, Jean Erik ; Sanda, Pavel ; Bazhenov, Maxim ; Bush, Daniel</creatorcontrib><description>Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010628</identifier><identifier>PMID: 36399437</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Artificial neural networks ; Biology and Life Sciences ; Brain ; Computer and Information Sciences ; Configurations ; Decision making ; Firing pattern ; Insects ; Learning ; Learning - physiology ; Manifolds ; Medicine and Health Sciences ; Memory ; Neural circuitry ; Neural networks ; Neural Networks, Computer ; Neurons ; Neurosciences ; Physiological aspects ; Psychological aspects ; Sleep ; Social Sciences ; Spiking ; Synapses ; Synaptic strength ; Training</subject><ispartof>PLoS computational biology, 2022-11, Vol.18 (11), p.e1010628-e1010628</ispartof><rights>Copyright: © 2022 Golden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Golden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Golden et al 2022 Golden et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-78e43162c4f2ede0b1f1355eb1d65e958f03ab2418bad9a1801f27283c24aa453</citedby><cites>FETCH-LOGICAL-c661t-78e43162c4f2ede0b1f1355eb1d65e958f03ab2418bad9a1801f27283c24aa453</cites><orcidid>0000-0001-7401-6046 ; 0000-0002-1936-0570 ; 0000-0002-8680-3239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674146/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674146/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36399437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bush, Daniel</contributor><creatorcontrib>Golden, Ryan</creatorcontrib><creatorcontrib>Delanois, Jean Erik</creatorcontrib><creatorcontrib>Sanda, Pavel</creatorcontrib><creatorcontrib>Bazhenov, Maxim</creatorcontrib><title>Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning.</description><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Computer and Information Sciences</subject><subject>Configurations</subject><subject>Decision making</subject><subject>Firing pattern</subject><subject>Insects</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Manifolds</subject><subject>Medicine and Health Sciences</subject><subject>Memory</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Psychological aspects</subject><subject>Sleep</subject><subject>Social Sciences</subject><subject>Spiking</subject><subject>Synapses</subject><subject>Synaptic strength</subject><subject>Training</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEog_4BwgisYHFDLGd2M4Gqap4jFSBRGFtOc51xtOMHWynZf59HSatOqgblIWv7O-em3N0s-wVKpaIMPRh40ZvZb8cVGOWqEAFxfxJdoyqiiwYqfjTB_VRdhLCpihSWdPn2RGhpK5Lwo6zcNkDDPng4RpsDLmSUYbo3bA2KtfOdxCjsV1ubB4GczWVFkYv-3TEG-evQt7sJnA7Pcl844yNedhZOcSkcAOmW8fcQxoQ0gAZjbMvsmda9gFezudp9uvzp5_nXxcX37-szs8uFopSFBeMQ0kQxarUGFooGqQRqSpoUEsrqCuuCyIbXCLeyLaWiBdIY4Y5UbiUsqzIafZmrzv0Log5ryAwqyrECaUTsdoTrZMbMXizlX4nnDTi70WyL6RPPnoQjBBV86YljNUl45SrmrQaE9pwzJnmSevjPG1sttCq5DbFdCB6-GLNWnTuWtSUlaikSeDdLODd7xFCFFsTFPS9tODG6b8JR5zRAiX07T_o4-5mqpPJgLHapblqEhVnKaealrjCiVo-QqWvha1RzoI26f6g4f1BQ2Ii_ImdHEMQq8sf_8F-O2TLPau8C8GDvs8OFWJa-TuTYlp5Ma98anv9MPf7prsdJ7fF2v38</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Golden, Ryan</creator><creator>Delanois, Jean Erik</creator><creator>Sanda, Pavel</creator><creator>Bazhenov, Maxim</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7401-6046</orcidid><orcidid>https://orcid.org/0000-0002-1936-0570</orcidid><orcidid>https://orcid.org/0000-0002-8680-3239</orcidid></search><sort><creationdate>20221101</creationdate><title>Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation</title><author>Golden, Ryan ; Delanois, Jean Erik ; Sanda, Pavel ; Bazhenov, Maxim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-78e43162c4f2ede0b1f1355eb1d65e958f03ab2418bad9a1801f27283c24aa453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Computer and Information Sciences</topic><topic>Configurations</topic><topic>Decision making</topic><topic>Firing pattern</topic><topic>Insects</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Manifolds</topic><topic>Medicine and Health Sciences</topic><topic>Memory</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Psychological aspects</topic><topic>Sleep</topic><topic>Social Sciences</topic><topic>Spiking</topic><topic>Synapses</topic><topic>Synaptic strength</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golden, Ryan</creatorcontrib><creatorcontrib>Delanois, Jean Erik</creatorcontrib><creatorcontrib>Sanda, Pavel</creatorcontrib><creatorcontrib>Bazhenov, Maxim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golden, Ryan</au><au>Delanois, Jean Erik</au><au>Sanda, Pavel</au><au>Bazhenov, Maxim</au><au>Bush, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>18</volume><issue>11</issue><spage>e1010628</spage><epage>e1010628</epage><pages>e1010628-e1010628</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36399437</pmid><doi>10.1371/journal.pcbi.1010628</doi><tpages>e1010628</tpages><orcidid>https://orcid.org/0000-0001-7401-6046</orcidid><orcidid>https://orcid.org/0000-0002-1936-0570</orcidid><orcidid>https://orcid.org/0000-0002-8680-3239</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2022-11, Vol.18 (11), p.e1010628-e1010628 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2755183665 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Artificial neural networks Biology and Life Sciences Brain Computer and Information Sciences Configurations Decision making Firing pattern Insects Learning Learning - physiology Manifolds Medicine and Health Sciences Memory Neural circuitry Neural networks Neural Networks, Computer Neurons Neurosciences Physiological aspects Psychological aspects Sleep Social Sciences Spiking Synapses Synaptic strength Training |
title | Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sleep%20prevents%20catastrophic%20forgetting%20in%20spiking%20neural%20networks%20by%20forming%20a%20joint%20synaptic%20weight%20representation&rft.jtitle=PLoS%20computational%20biology&rft.au=Golden,%20Ryan&rft.date=2022-11-01&rft.volume=18&rft.issue=11&rft.spage=e1010628&rft.epage=e1010628&rft.pages=e1010628-e1010628&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010628&rft_dat=%3Cgale_plos_%3EA728964252%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755183665&rft_id=info:pmid/36399437&rft_galeid=A728964252&rft_doaj_id=oai_doaj_org_article_733c98bd377947868c93df236b8287f8&rfr_iscdi=true |