A simple covert hepatic encephalopathy screening model based on blood biochemical parameters in patients with cirrhosis

Covert hepatic encephalopathy (CHE) adversely affects clinical outcomes in patients with liver cirrhosis, although its diagnosis is difficult. This study aimed to establish a simple CHE screening model based on blood-related biochemical parameters. This retrospective study enrolled 439 patients who...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-11, Vol.17 (11), p.e0277829-e0277829
Hauptverfasser: Miwa, Takao, Hanai, Tatsunori, Nishimura, Kayoko, Maeda, Toshihide, Tajirika, Satoko, Imai, Kenji, Suetsugu, Atsushi, Takai, Koji, Yamamoto, Mayumi, Shimizu, Masahito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0277829
container_issue 11
container_start_page e0277829
container_title PloS one
container_volume 17
creator Miwa, Takao
Hanai, Tatsunori
Nishimura, Kayoko
Maeda, Toshihide
Tajirika, Satoko
Imai, Kenji
Suetsugu, Atsushi
Takai, Koji
Yamamoto, Mayumi
Shimizu, Masahito
description Covert hepatic encephalopathy (CHE) adversely affects clinical outcomes in patients with liver cirrhosis, although its diagnosis is difficult. This study aimed to establish a simple CHE screening model based on blood-related biochemical parameters. This retrospective study enrolled 439 patients who were assessed for CHE using a neuropsychiatric test between January 2011 and June 2019. A simple CHE (sCHE) score was calculated with hypoalbuminemia (≤ 3.5 g/dL) and hyperammonemia (≥ 80 μg/dL) as 1 point each. The association between sCHE score and CHE or overt hepatic encephalopathy (OHE) was assessed using logistic regression and Fine-Gray competing risk regression models. Of 381 eligible patients, 79 (21%) were diagnosed with CHE. The distribution of sCHE scores was 48% with 0 point, 33% with 1 point, and 19% with 2 points. Patients with sCHE score ≥ 1 point had a higher prevalence of CHE than those with sCHE score of 0 (27% vs. 14%, P = 0.002). A cut-off value of 1 point showed high discriminative ability for identifying CHE, with a sensitivity of 0.67, specificity of 0.56, positive predictive value of 0.27, and negative predictive value of 0.86. During the median follow-up period of 2.2 years, 58 (15%) patients developed OHE. Multivariate analysis showed that sCHE score ≥ 1 (sub-distribution hazard ratio [SHR], 2.69; 95% confidence interval [CI], 1.41-5.15) and CHE (SHR, 2.17; 95% CI, 1.26-3.73) independently predicted OHE. The sCHE score is a useful screening model for identifying patients with CHE and for predicting OHE occurrence.
doi_str_mv 10.1371/journal.pone.0277829
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2743380986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728371638</galeid><doaj_id>oai_doaj_org_article_35c9a0c6298e4c198e12f0c5a25d0cae</doaj_id><sourcerecordid>A728371638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d0360c973f9eae4031236a340d74862ffd9b86e1508f57155472625ed7be623a3</originalsourceid><addsrcrecordid>eNqNk9tq3DAQhk1padK0b1BaQaG0F7uVJVuybgpL6GEhEOjpVmjl8VqLLDmSnTRvX23XCeuSiyLQ8ZtfmtFMlr3M8TKnPP-w82Nwyi5772CJCecVEY-y01xQsmAE08dH85PsWYw7jEtaMfY0O6GsKEQhyGl2s0LRdL0FpP01hAG10KvBaAROQ98q69OyvUVRBwBn3BZ1vgaLNipCjbxDG-t9jTbG6xY6o5VFvQqqgwFCRMahvRq4IaIbM7RImxBaH018nj1plI3wYhrPsp-fP_04_7q4uPyyPl9dLDQTZFjUmDKsBaeNAAUFpjmhTNEC17yoGGmaWmwqBnmJq6bkeVkWnDBSQs03wAhV9Cx7fdDtrY9yilmUhBeUVlhULBHrA1F7tZN9MJ0Kt9IrI_9u-LCVKqSIWJC01EJhzYiooNB56nPSYF0qUtZYK0haH6fbxk0HtU6OB2VnovMTZ1q59ddS8BxzTpLAu0kg-KsR4iA7EzVYqxz48fDuEpcci4S--Qd92LuJ2qrkgHGNT_fqvahccVKlRGK0StTyASq1ev-nKcEak_ZnBu9nBokZ4PewVWOMcv392_-zl7_m7NsjtgVlhzZ6Ow7GuzgHiwOog48xQHMf5BzLfX3cRUPu60NO9ZHMXh1_0L3RXUHQP_wRC9o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2743380986</pqid></control><display><type>article</type><title>A simple covert hepatic encephalopathy screening model based on blood biochemical parameters in patients with cirrhosis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Miwa, Takao ; Hanai, Tatsunori ; Nishimura, Kayoko ; Maeda, Toshihide ; Tajirika, Satoko ; Imai, Kenji ; Suetsugu, Atsushi ; Takai, Koji ; Yamamoto, Mayumi ; Shimizu, Masahito</creator><contributor>Mori, Shunsuke</contributor><creatorcontrib>Miwa, Takao ; Hanai, Tatsunori ; Nishimura, Kayoko ; Maeda, Toshihide ; Tajirika, Satoko ; Imai, Kenji ; Suetsugu, Atsushi ; Takai, Koji ; Yamamoto, Mayumi ; Shimizu, Masahito ; Mori, Shunsuke</creatorcontrib><description>Covert hepatic encephalopathy (CHE) adversely affects clinical outcomes in patients with liver cirrhosis, although its diagnosis is difficult. This study aimed to establish a simple CHE screening model based on blood-related biochemical parameters. This retrospective study enrolled 439 patients who were assessed for CHE using a neuropsychiatric test between January 2011 and June 2019. A simple CHE (sCHE) score was calculated with hypoalbuminemia (≤ 3.5 g/dL) and hyperammonemia (≥ 80 μg/dL) as 1 point each. The association between sCHE score and CHE or overt hepatic encephalopathy (OHE) was assessed using logistic regression and Fine-Gray competing risk regression models. Of 381 eligible patients, 79 (21%) were diagnosed with CHE. The distribution of sCHE scores was 48% with 0 point, 33% with 1 point, and 19% with 2 points. Patients with sCHE score ≥ 1 point had a higher prevalence of CHE than those with sCHE score of 0 (27% vs. 14%, P = 0.002). A cut-off value of 1 point showed high discriminative ability for identifying CHE, with a sensitivity of 0.67, specificity of 0.56, positive predictive value of 0.27, and negative predictive value of 0.86. During the median follow-up period of 2.2 years, 58 (15%) patients developed OHE. Multivariate analysis showed that sCHE score ≥ 1 (sub-distribution hazard ratio [SHR], 2.69; 95% confidence interval [CI], 1.41-5.15) and CHE (SHR, 2.17; 95% CI, 1.26-3.73) independently predicted OHE. The sCHE score is a useful screening model for identifying patients with CHE and for predicting OHE occurrence.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0277829</identifier><identifier>PMID: 36449492</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ammonia ; Biology and Life Sciences ; Blood ; Cirrhosis ; Clinical outcomes ; Confidence intervals ; Diagnosis ; Encephalopathy ; Health risks ; Hepatic encephalopathy ; Hepatic Encephalopathy - diagnosis ; Humans ; Hyperammonemia ; Liver ; Liver cancer ; Liver cirrhosis ; Liver Cirrhosis - complications ; Liver Cirrhosis - diagnosis ; Liver diseases ; Medical examination ; Medical screening ; Medicine and Health Sciences ; Methods ; Modelling ; Multivariate analysis ; Parameters ; Patients ; Physical Sciences ; Regression analysis ; Regression models ; Research and Analysis Methods ; Retrospective Studies ; Statistical analysis ; Statistical significance ; Variables</subject><ispartof>PloS one, 2022-11, Vol.17 (11), p.e0277829-e0277829</ispartof><rights>Copyright: © 2022 Miwa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Miwa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Miwa et al 2022 Miwa et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d0360c973f9eae4031236a340d74862ffd9b86e1508f57155472625ed7be623a3</citedby><cites>FETCH-LOGICAL-c692t-d0360c973f9eae4031236a340d74862ffd9b86e1508f57155472625ed7be623a3</cites><orcidid>0000-0002-6373-260X ; 0000-0002-5603-6825 ; 0000-0001-7797-9534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710772/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710772/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36449492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mori, Shunsuke</contributor><creatorcontrib>Miwa, Takao</creatorcontrib><creatorcontrib>Hanai, Tatsunori</creatorcontrib><creatorcontrib>Nishimura, Kayoko</creatorcontrib><creatorcontrib>Maeda, Toshihide</creatorcontrib><creatorcontrib>Tajirika, Satoko</creatorcontrib><creatorcontrib>Imai, Kenji</creatorcontrib><creatorcontrib>Suetsugu, Atsushi</creatorcontrib><creatorcontrib>Takai, Koji</creatorcontrib><creatorcontrib>Yamamoto, Mayumi</creatorcontrib><creatorcontrib>Shimizu, Masahito</creatorcontrib><title>A simple covert hepatic encephalopathy screening model based on blood biochemical parameters in patients with cirrhosis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Covert hepatic encephalopathy (CHE) adversely affects clinical outcomes in patients with liver cirrhosis, although its diagnosis is difficult. This study aimed to establish a simple CHE screening model based on blood-related biochemical parameters. This retrospective study enrolled 439 patients who were assessed for CHE using a neuropsychiatric test between January 2011 and June 2019. A simple CHE (sCHE) score was calculated with hypoalbuminemia (≤ 3.5 g/dL) and hyperammonemia (≥ 80 μg/dL) as 1 point each. The association between sCHE score and CHE or overt hepatic encephalopathy (OHE) was assessed using logistic regression and Fine-Gray competing risk regression models. Of 381 eligible patients, 79 (21%) were diagnosed with CHE. The distribution of sCHE scores was 48% with 0 point, 33% with 1 point, and 19% with 2 points. Patients with sCHE score ≥ 1 point had a higher prevalence of CHE than those with sCHE score of 0 (27% vs. 14%, P = 0.002). A cut-off value of 1 point showed high discriminative ability for identifying CHE, with a sensitivity of 0.67, specificity of 0.56, positive predictive value of 0.27, and negative predictive value of 0.86. During the median follow-up period of 2.2 years, 58 (15%) patients developed OHE. Multivariate analysis showed that sCHE score ≥ 1 (sub-distribution hazard ratio [SHR], 2.69; 95% confidence interval [CI], 1.41-5.15) and CHE (SHR, 2.17; 95% CI, 1.26-3.73) independently predicted OHE. The sCHE score is a useful screening model for identifying patients with CHE and for predicting OHE occurrence.</description><subject>Ammonia</subject><subject>Biology and Life Sciences</subject><subject>Blood</subject><subject>Cirrhosis</subject><subject>Clinical outcomes</subject><subject>Confidence intervals</subject><subject>Diagnosis</subject><subject>Encephalopathy</subject><subject>Health risks</subject><subject>Hepatic encephalopathy</subject><subject>Hepatic Encephalopathy - diagnosis</subject><subject>Humans</subject><subject>Hyperammonemia</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Liver cirrhosis</subject><subject>Liver Cirrhosis - complications</subject><subject>Liver Cirrhosis - diagnosis</subject><subject>Liver diseases</subject><subject>Medical examination</subject><subject>Medical screening</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Modelling</subject><subject>Multivariate analysis</subject><subject>Parameters</subject><subject>Patients</subject><subject>Physical Sciences</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Retrospective Studies</subject><subject>Statistical analysis</subject><subject>Statistical significance</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tq3DAQhk1padK0b1BaQaG0F7uVJVuybgpL6GEhEOjpVmjl8VqLLDmSnTRvX23XCeuSiyLQ8ZtfmtFMlr3M8TKnPP-w82Nwyi5772CJCecVEY-y01xQsmAE08dH85PsWYw7jEtaMfY0O6GsKEQhyGl2s0LRdL0FpP01hAG10KvBaAROQ98q69OyvUVRBwBn3BZ1vgaLNipCjbxDG-t9jTbG6xY6o5VFvQqqgwFCRMahvRq4IaIbM7RImxBaH018nj1plI3wYhrPsp-fP_04_7q4uPyyPl9dLDQTZFjUmDKsBaeNAAUFpjmhTNEC17yoGGmaWmwqBnmJq6bkeVkWnDBSQs03wAhV9Cx7fdDtrY9yilmUhBeUVlhULBHrA1F7tZN9MJ0Kt9IrI_9u-LCVKqSIWJC01EJhzYiooNB56nPSYF0qUtZYK0haH6fbxk0HtU6OB2VnovMTZ1q59ddS8BxzTpLAu0kg-KsR4iA7EzVYqxz48fDuEpcci4S--Qd92LuJ2qrkgHGNT_fqvahccVKlRGK0StTyASq1ev-nKcEak_ZnBu9nBokZ4PewVWOMcv392_-zl7_m7NsjtgVlhzZ6Ow7GuzgHiwOog48xQHMf5BzLfX3cRUPu60NO9ZHMXh1_0L3RXUHQP_wRC9o</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Miwa, Takao</creator><creator>Hanai, Tatsunori</creator><creator>Nishimura, Kayoko</creator><creator>Maeda, Toshihide</creator><creator>Tajirika, Satoko</creator><creator>Imai, Kenji</creator><creator>Suetsugu, Atsushi</creator><creator>Takai, Koji</creator><creator>Yamamoto, Mayumi</creator><creator>Shimizu, Masahito</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6373-260X</orcidid><orcidid>https://orcid.org/0000-0002-5603-6825</orcidid><orcidid>https://orcid.org/0000-0001-7797-9534</orcidid></search><sort><creationdate>20221130</creationdate><title>A simple covert hepatic encephalopathy screening model based on blood biochemical parameters in patients with cirrhosis</title><author>Miwa, Takao ; Hanai, Tatsunori ; Nishimura, Kayoko ; Maeda, Toshihide ; Tajirika, Satoko ; Imai, Kenji ; Suetsugu, Atsushi ; Takai, Koji ; Yamamoto, Mayumi ; Shimizu, Masahito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d0360c973f9eae4031236a340d74862ffd9b86e1508f57155472625ed7be623a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Biology and Life Sciences</topic><topic>Blood</topic><topic>Cirrhosis</topic><topic>Clinical outcomes</topic><topic>Confidence intervals</topic><topic>Diagnosis</topic><topic>Encephalopathy</topic><topic>Health risks</topic><topic>Hepatic encephalopathy</topic><topic>Hepatic Encephalopathy - diagnosis</topic><topic>Humans</topic><topic>Hyperammonemia</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Liver cirrhosis</topic><topic>Liver Cirrhosis - complications</topic><topic>Liver Cirrhosis - diagnosis</topic><topic>Liver diseases</topic><topic>Medical examination</topic><topic>Medical screening</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Modelling</topic><topic>Multivariate analysis</topic><topic>Parameters</topic><topic>Patients</topic><topic>Physical Sciences</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Retrospective Studies</topic><topic>Statistical analysis</topic><topic>Statistical significance</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miwa, Takao</creatorcontrib><creatorcontrib>Hanai, Tatsunori</creatorcontrib><creatorcontrib>Nishimura, Kayoko</creatorcontrib><creatorcontrib>Maeda, Toshihide</creatorcontrib><creatorcontrib>Tajirika, Satoko</creatorcontrib><creatorcontrib>Imai, Kenji</creatorcontrib><creatorcontrib>Suetsugu, Atsushi</creatorcontrib><creatorcontrib>Takai, Koji</creatorcontrib><creatorcontrib>Yamamoto, Mayumi</creatorcontrib><creatorcontrib>Shimizu, Masahito</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miwa, Takao</au><au>Hanai, Tatsunori</au><au>Nishimura, Kayoko</au><au>Maeda, Toshihide</au><au>Tajirika, Satoko</au><au>Imai, Kenji</au><au>Suetsugu, Atsushi</au><au>Takai, Koji</au><au>Yamamoto, Mayumi</au><au>Shimizu, Masahito</au><au>Mori, Shunsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple covert hepatic encephalopathy screening model based on blood biochemical parameters in patients with cirrhosis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-11-30</date><risdate>2022</risdate><volume>17</volume><issue>11</issue><spage>e0277829</spage><epage>e0277829</epage><pages>e0277829-e0277829</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Covert hepatic encephalopathy (CHE) adversely affects clinical outcomes in patients with liver cirrhosis, although its diagnosis is difficult. This study aimed to establish a simple CHE screening model based on blood-related biochemical parameters. This retrospective study enrolled 439 patients who were assessed for CHE using a neuropsychiatric test between January 2011 and June 2019. A simple CHE (sCHE) score was calculated with hypoalbuminemia (≤ 3.5 g/dL) and hyperammonemia (≥ 80 μg/dL) as 1 point each. The association between sCHE score and CHE or overt hepatic encephalopathy (OHE) was assessed using logistic regression and Fine-Gray competing risk regression models. Of 381 eligible patients, 79 (21%) were diagnosed with CHE. The distribution of sCHE scores was 48% with 0 point, 33% with 1 point, and 19% with 2 points. Patients with sCHE score ≥ 1 point had a higher prevalence of CHE than those with sCHE score of 0 (27% vs. 14%, P = 0.002). A cut-off value of 1 point showed high discriminative ability for identifying CHE, with a sensitivity of 0.67, specificity of 0.56, positive predictive value of 0.27, and negative predictive value of 0.86. During the median follow-up period of 2.2 years, 58 (15%) patients developed OHE. Multivariate analysis showed that sCHE score ≥ 1 (sub-distribution hazard ratio [SHR], 2.69; 95% confidence interval [CI], 1.41-5.15) and CHE (SHR, 2.17; 95% CI, 1.26-3.73) independently predicted OHE. The sCHE score is a useful screening model for identifying patients with CHE and for predicting OHE occurrence.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36449492</pmid><doi>10.1371/journal.pone.0277829</doi><tpages>e0277829</tpages><orcidid>https://orcid.org/0000-0002-6373-260X</orcidid><orcidid>https://orcid.org/0000-0002-5603-6825</orcidid><orcidid>https://orcid.org/0000-0001-7797-9534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-11, Vol.17 (11), p.e0277829-e0277829
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2743380986
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Ammonia
Biology and Life Sciences
Blood
Cirrhosis
Clinical outcomes
Confidence intervals
Diagnosis
Encephalopathy
Health risks
Hepatic encephalopathy
Hepatic Encephalopathy - diagnosis
Humans
Hyperammonemia
Liver
Liver cancer
Liver cirrhosis
Liver Cirrhosis - complications
Liver Cirrhosis - diagnosis
Liver diseases
Medical examination
Medical screening
Medicine and Health Sciences
Methods
Modelling
Multivariate analysis
Parameters
Patients
Physical Sciences
Regression analysis
Regression models
Research and Analysis Methods
Retrospective Studies
Statistical analysis
Statistical significance
Variables
title A simple covert hepatic encephalopathy screening model based on blood biochemical parameters in patients with cirrhosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20covert%20hepatic%20encephalopathy%20screening%20model%20based%20on%20blood%20biochemical%20parameters%20in%20patients%20with%20cirrhosis&rft.jtitle=PloS%20one&rft.au=Miwa,%20Takao&rft.date=2022-11-30&rft.volume=17&rft.issue=11&rft.spage=e0277829&rft.epage=e0277829&rft.pages=e0277829-e0277829&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0277829&rft_dat=%3Cgale_plos_%3EA728371638%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2743380986&rft_id=info:pmid/36449492&rft_galeid=A728371638&rft_doaj_id=oai_doaj_org_article_35c9a0c6298e4c198e12f0c5a25d0cae&rfr_iscdi=true