A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling
In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-11, Vol.17 (11), p.e0276540 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | e0276540 |
container_title | PloS one |
container_volume | 17 |
creator | Ahmad, Sohaib Hussain, Sardar Ullah, Kalim Zahid, Erum Aamir, Muhammad Shabbir, Javid Ahmad, Zubair Alshanbari, Huda M Alajlan, Wejdan |
description | In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine the performances of a new improved proposed estimator. A simulation study is also recognized to assess the robustness and generalizability of the proposed estimator. From the result of real data sets and simulation study, it is examining that the proposed estimator give minimum mean square error and percentage relative efficiency are higher than all existing counterparts, which shown the importance of new improved estimator. The theoretical and numerical result illustrated that the proposed variance estimator based on simple random sampling using dual auxiliary information has the best among all existing estimators. |
doi_str_mv | 10.1371/journal.pone.0276540 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2737708341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727008679</galeid><doaj_id>oai_doaj_org_article_57af6e78ff844692becd3c78b81614a2</doaj_id><sourcerecordid>A727008679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-cf9f034ed2463c9917147f4100fae211e31c3d39c9bb460fbba31990e35392c73</originalsourceid><addsrcrecordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F95KltayelFYQg8LgUBPt0KWR7taZMuR7JB9iL5z5awT1iUXxReyxt__j2asSZKXGC0wYfjDzg2-lXbRuRYWKGfFkqJHySnmJM-KHJHHR-8nybMQdggtSVkUT5MTUhDO6ZKcJn9WaTDNYGVvXJuGfqj3H9N103l3DXXqx3Bm2szDxkMII9PvO0ivpTeyVZBC6E0je-fTSoaoiEA9SJsOAVKnUzncGGuk3x8UlYV0aGvwY9Iubrxsa9ekQcadaTfPkyda2gAvpvUs-fXl88_zb9nF5df1-eoiUwXP-0xprhGhUOe0IIpzzDBlmmKEtIQcYyBYkZpwxauKFkhXlSSYcwRkSXiuGDlLXh98O-uCmDoZRM4IY6gkFEdifSBqJ3ei87FIvxdOGnEbcH4jpO-NsiCWTOoCWKl1SWk8XwWqJoqVVYkLTGUevT5N2YaqgVpB23tpZ6bzL63Zio27FrxgFC9pNHg3GXh3NcSWi8YEBdbKFtxwe-4SlyzSEX3zD_pwdRO1kbEA02oX86rRVKxYzhAqC8YjtXiAik8NjVHx2mkT4zPB-5kgMj3c9Bs5hCDWP77_P3v5e86-PWK3IG2_Dc4O450Nc5AeQOVdCB70fZMxEuPU3HVDjFMjpqmJslfHP-hedDcm5C_UGxRg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737708341</pqid></control><display><type>article</type><title>A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ahmad, Sohaib ; Hussain, Sardar ; Ullah, Kalim ; Zahid, Erum ; Aamir, Muhammad ; Shabbir, Javid ; Ahmad, Zubair ; Alshanbari, Huda M ; Alajlan, Wejdan</creator><creatorcontrib>Ahmad, Sohaib ; Hussain, Sardar ; Ullah, Kalim ; Zahid, Erum ; Aamir, Muhammad ; Shabbir, Javid ; Ahmad, Zubair ; Alshanbari, Huda M ; Alajlan, Wejdan</creatorcontrib><description>In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine the performances of a new improved proposed estimator. A simulation study is also recognized to assess the robustness and generalizability of the proposed estimator. From the result of real data sets and simulation study, it is examining that the proposed estimator give minimum mean square error and percentage relative efficiency are higher than all existing counterparts, which shown the importance of new improved estimator. The theoretical and numerical result illustrated that the proposed variance estimator based on simple random sampling using dual auxiliary information has the best among all existing estimators.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0276540</identifier><identifier>PMID: 36399453</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Computer Simulation ; Data Collection ; Datasets ; Efficiency ; Estimators ; Mathematical analysis ; Mathematical research ; Mean square errors ; Medicine and Health Sciences ; Methods ; Models, Statistical ; People and Places ; Physical Sciences ; Random sampling ; Research and Analysis Methods ; Research Design ; Robustness (mathematics) ; Sampling ; Simulation ; Social surveys ; Statistical sampling ; Variables ; Variance</subject><ispartof>PloS one, 2022-11, Vol.17 (11), p.e0276540</ispartof><rights>Copyright: © 2022 Ahmad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Ahmad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Ahmad et al 2022 Ahmad et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-cf9f034ed2463c9917147f4100fae211e31c3d39c9bb460fbba31990e35392c73</citedby><cites>FETCH-LOGICAL-c692t-cf9f034ed2463c9917147f4100fae211e31c3d39c9bb460fbba31990e35392c73</cites><orcidid>0000-0003-3782-4081 ; 0000-0001-9274-0396 ; 0000-0001-5154-7477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674154/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674154/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36399453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmad, Sohaib</creatorcontrib><creatorcontrib>Hussain, Sardar</creatorcontrib><creatorcontrib>Ullah, Kalim</creatorcontrib><creatorcontrib>Zahid, Erum</creatorcontrib><creatorcontrib>Aamir, Muhammad</creatorcontrib><creatorcontrib>Shabbir, Javid</creatorcontrib><creatorcontrib>Ahmad, Zubair</creatorcontrib><creatorcontrib>Alshanbari, Huda M</creatorcontrib><creatorcontrib>Alajlan, Wejdan</creatorcontrib><title>A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine the performances of a new improved proposed estimator. A simulation study is also recognized to assess the robustness and generalizability of the proposed estimator. From the result of real data sets and simulation study, it is examining that the proposed estimator give minimum mean square error and percentage relative efficiency are higher than all existing counterparts, which shown the importance of new improved estimator. The theoretical and numerical result illustrated that the proposed variance estimator based on simple random sampling using dual auxiliary information has the best among all existing estimators.</description><subject>Biology and Life Sciences</subject><subject>Computer Simulation</subject><subject>Data Collection</subject><subject>Datasets</subject><subject>Efficiency</subject><subject>Estimators</subject><subject>Mathematical analysis</subject><subject>Mathematical research</subject><subject>Mean square errors</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Random sampling</subject><subject>Research and Analysis Methods</subject><subject>Research Design</subject><subject>Robustness (mathematics)</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Social surveys</subject><subject>Statistical sampling</subject><subject>Variables</subject><subject>Variance</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F95KltayelFYQg8LgUBPt0KWR7taZMuR7JB9iL5z5awT1iUXxReyxt__j2asSZKXGC0wYfjDzg2-lXbRuRYWKGfFkqJHySnmJM-KHJHHR-8nybMQdggtSVkUT5MTUhDO6ZKcJn9WaTDNYGVvXJuGfqj3H9N103l3DXXqx3Bm2szDxkMII9PvO0ivpTeyVZBC6E0je-fTSoaoiEA9SJsOAVKnUzncGGuk3x8UlYV0aGvwY9Iubrxsa9ekQcadaTfPkyda2gAvpvUs-fXl88_zb9nF5df1-eoiUwXP-0xprhGhUOe0IIpzzDBlmmKEtIQcYyBYkZpwxauKFkhXlSSYcwRkSXiuGDlLXh98O-uCmDoZRM4IY6gkFEdifSBqJ3ei87FIvxdOGnEbcH4jpO-NsiCWTOoCWKl1SWk8XwWqJoqVVYkLTGUevT5N2YaqgVpB23tpZ6bzL63Zio27FrxgFC9pNHg3GXh3NcSWi8YEBdbKFtxwe-4SlyzSEX3zD_pwdRO1kbEA02oX86rRVKxYzhAqC8YjtXiAik8NjVHx2mkT4zPB-5kgMj3c9Bs5hCDWP77_P3v5e86-PWK3IG2_Dc4O450Nc5AeQOVdCB70fZMxEuPU3HVDjFMjpqmJslfHP-hedDcm5C_UGxRg</recordid><startdate>20221118</startdate><enddate>20221118</enddate><creator>Ahmad, Sohaib</creator><creator>Hussain, Sardar</creator><creator>Ullah, Kalim</creator><creator>Zahid, Erum</creator><creator>Aamir, Muhammad</creator><creator>Shabbir, Javid</creator><creator>Ahmad, Zubair</creator><creator>Alshanbari, Huda M</creator><creator>Alajlan, Wejdan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3782-4081</orcidid><orcidid>https://orcid.org/0000-0001-9274-0396</orcidid><orcidid>https://orcid.org/0000-0001-5154-7477</orcidid></search><sort><creationdate>20221118</creationdate><title>A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling</title><author>Ahmad, Sohaib ; Hussain, Sardar ; Ullah, Kalim ; Zahid, Erum ; Aamir, Muhammad ; Shabbir, Javid ; Ahmad, Zubair ; Alshanbari, Huda M ; Alajlan, Wejdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-cf9f034ed2463c9917147f4100fae211e31c3d39c9bb460fbba31990e35392c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biology and Life Sciences</topic><topic>Computer Simulation</topic><topic>Data Collection</topic><topic>Datasets</topic><topic>Efficiency</topic><topic>Estimators</topic><topic>Mathematical analysis</topic><topic>Mathematical research</topic><topic>Mean square errors</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Random sampling</topic><topic>Research and Analysis Methods</topic><topic>Research Design</topic><topic>Robustness (mathematics)</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Social surveys</topic><topic>Statistical sampling</topic><topic>Variables</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Sohaib</creatorcontrib><creatorcontrib>Hussain, Sardar</creatorcontrib><creatorcontrib>Ullah, Kalim</creatorcontrib><creatorcontrib>Zahid, Erum</creatorcontrib><creatorcontrib>Aamir, Muhammad</creatorcontrib><creatorcontrib>Shabbir, Javid</creatorcontrib><creatorcontrib>Ahmad, Zubair</creatorcontrib><creatorcontrib>Alshanbari, Huda M</creatorcontrib><creatorcontrib>Alajlan, Wejdan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Sohaib</au><au>Hussain, Sardar</au><au>Ullah, Kalim</au><au>Zahid, Erum</au><au>Aamir, Muhammad</au><au>Shabbir, Javid</au><au>Ahmad, Zubair</au><au>Alshanbari, Huda M</au><au>Alajlan, Wejdan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-11-18</date><risdate>2022</risdate><volume>17</volume><issue>11</issue><spage>e0276540</spage><pages>e0276540-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine the performances of a new improved proposed estimator. A simulation study is also recognized to assess the robustness and generalizability of the proposed estimator. From the result of real data sets and simulation study, it is examining that the proposed estimator give minimum mean square error and percentage relative efficiency are higher than all existing counterparts, which shown the importance of new improved estimator. The theoretical and numerical result illustrated that the proposed variance estimator based on simple random sampling using dual auxiliary information has the best among all existing estimators.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36399453</pmid><doi>10.1371/journal.pone.0276540</doi><tpages>e0276540</tpages><orcidid>https://orcid.org/0000-0003-3782-4081</orcidid><orcidid>https://orcid.org/0000-0001-9274-0396</orcidid><orcidid>https://orcid.org/0000-0001-5154-7477</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-11, Vol.17 (11), p.e0276540 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2737708341 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biology and Life Sciences Computer Simulation Data Collection Datasets Efficiency Estimators Mathematical analysis Mathematical research Mean square errors Medicine and Health Sciences Methods Models, Statistical People and Places Physical Sciences Random sampling Research and Analysis Methods Research Design Robustness (mathematics) Sampling Simulation Social surveys Statistical sampling Variables Variance |
title | A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simulation%20study:%20Improved%20ratio-in-regression%20type%20variance%20estimator%20based%20on%20dual%20use%20of%20auxiliary%20variable%20under%20simple%20random%20sampling&rft.jtitle=PloS%20one&rft.au=Ahmad,%20Sohaib&rft.date=2022-11-18&rft.volume=17&rft.issue=11&rft.spage=e0276540&rft.pages=e0276540-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0276540&rft_dat=%3Cgale_plos_%3EA727008679%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737708341&rft_id=info:pmid/36399453&rft_galeid=A727008679&rft_doaj_id=oai_doaj_org_article_57af6e78ff844692becd3c78b81614a2&rfr_iscdi=true |