Chaos in synthetic microbial communities
Predictability is a fundamental requirement in biological engineering. As we move to building coordinated multicellular systems, the potential for such systems to display chaotic behaviour becomes a concern. Therefore understanding which systems show chaos is an important design consideration. We de...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2022-10, Vol.18 (10), p.e1010548-e1010548 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010548 |
---|---|
container_issue | 10 |
container_start_page | e1010548 |
container_title | PLoS computational biology |
container_volume | 18 |
creator | Karkaria, Behzad D Manhart, Angelika Fedorec, Alex J. H Barnes, Chris P |
description | Predictability is a fundamental requirement in biological engineering. As we move to building coordinated multicellular systems, the potential for such systems to display chaotic behaviour becomes a concern. Therefore understanding which systems show chaos is an important design consideration. We developed a methodology to explore the potential for chaotic dynamics in small microbial communities governed by resource competition, intercellular communication and competitive bacteriocin interactions. Our model selection pipeline uses Approximate Bayesian Computation to first identify oscillatory behaviours as a route to finding chaotic behaviour. We have shown that we can expect to find chaotic states in relatively small synthetic microbial systems, understand the governing dynamics and provide insights into how to control such systems. This work is the first to query the existence of chaotic behaviour in synthetic microbial communities and has important ramifications for the fields of biotechnology, bioprocessing and synthetic biology. |
doi_str_mv | 10.1371/journal.pcbi.1010548 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2737143042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724761896</galeid><doaj_id>oai_doaj_org_article_72ee517f9eb94601a1fe8115e86d6f6d</doaj_id><sourcerecordid>A724761896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-9e64db586b43c1db07de25cd4c9e6932eb474b178d984da1c92ca2f6b69cae03</originalsourceid><addsrcrecordid>eNqVkkuLFDEQxxtR3HX1GwgOeFkPM6by7ouwDD4GFgXde8ijeiZDd2fsdIv77c04rTjiRXJIUfWrxz-pqnoOZAVMwet9mobetquDd3EFBIjg-kF1CUKwpWJCP_zDvqie5LwnpJi1fFxdMElBMEovq-v1zqa8iP0i3_fjDsfoF130Q3LRtgufum7q4xgxP60eNbbN-Gy-r6q7d2_v1h-Wt5_eb9Y3t0svgYzLGiUPTmjpOPMQHFEBqfCB-xKpGUXHFXegdKg1DxZ8Tb2ljXSy9hYJu6penMoe2pTNrDEbqopkzginhdiciJDs3hyG2Nnh3iQbzU9HGrbGDkVGi0ZRRAGqqdHVXBKw0KAGEKhlkI0MpdabudvkOgwe-3Gw7VnR80gfd2abvplaaC7ocdzrucCQvk6YR9PF7LFtbY9pOs5NmQbOpS7oy7_Qf6tbnaitLQJi36TS15cTsHxL6rGJxX-jKFcSymeWhFdnCYUZ8fu4tVPOZvPl83-wH89ZfmLLLuQ8YPP7VYCY4wL-Gt8cF9DMC8h-AGfIzJM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737143042</pqid></control><display><type>article</type><title>Chaos in synthetic microbial communities</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Karkaria, Behzad D ; Manhart, Angelika ; Fedorec, Alex J. H ; Barnes, Chris P</creator><contributor>Rao, Christopher</contributor><creatorcontrib>Karkaria, Behzad D ; Manhart, Angelika ; Fedorec, Alex J. H ; Barnes, Chris P ; Rao, Christopher</creatorcontrib><description>Predictability is a fundamental requirement in biological engineering. As we move to building coordinated multicellular systems, the potential for such systems to display chaotic behaviour becomes a concern. Therefore understanding which systems show chaos is an important design consideration. We developed a methodology to explore the potential for chaotic dynamics in small microbial communities governed by resource competition, intercellular communication and competitive bacteriocin interactions. Our model selection pipeline uses Approximate Bayesian Computation to first identify oscillatory behaviours as a route to finding chaotic behaviour. We have shown that we can expect to find chaotic states in relatively small synthetic microbial systems, understand the governing dynamics and provide insights into how to control such systems. This work is the first to query the existence of chaotic behaviour in synthetic microbial communities and has important ramifications for the fields of biotechnology, bioprocessing and synthetic biology.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010548</identifier><identifier>PMID: 36215322</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Bacteriocins ; Bayesian analysis ; Bayesian statistical decision theory ; Behavior ; Bioengineering ; Biology and Life Sciences ; Bioprocessing ; Biotechnology ; Chaos theory ; Competition ; Control systems ; Kalman filters ; Methods ; Microbial activity ; Microbial colonies ; Microbiomes ; Microorganisms ; Physical Sciences ; Research and Analysis Methods ; Social Sciences</subject><ispartof>PLoS computational biology, 2022-10, Vol.18 (10), p.e1010548-e1010548</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Karkaria et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Karkaria et al 2022 Karkaria et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-9e64db586b43c1db07de25cd4c9e6932eb474b178d984da1c92ca2f6b69cae03</citedby><cites>FETCH-LOGICAL-c610t-9e64db586b43c1db07de25cd4c9e6932eb474b178d984da1c92ca2f6b69cae03</cites><orcidid>0000-0003-0165-1705 ; 0000-0003-2627-9794 ; 0000-0002-0303-8114 ; 0000-0002-9459-1395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584520/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584520/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids></links><search><contributor>Rao, Christopher</contributor><creatorcontrib>Karkaria, Behzad D</creatorcontrib><creatorcontrib>Manhart, Angelika</creatorcontrib><creatorcontrib>Fedorec, Alex J. H</creatorcontrib><creatorcontrib>Barnes, Chris P</creatorcontrib><title>Chaos in synthetic microbial communities</title><title>PLoS computational biology</title><description>Predictability is a fundamental requirement in biological engineering. As we move to building coordinated multicellular systems, the potential for such systems to display chaotic behaviour becomes a concern. Therefore understanding which systems show chaos is an important design consideration. We developed a methodology to explore the potential for chaotic dynamics in small microbial communities governed by resource competition, intercellular communication and competitive bacteriocin interactions. Our model selection pipeline uses Approximate Bayesian Computation to first identify oscillatory behaviours as a route to finding chaotic behaviour. We have shown that we can expect to find chaotic states in relatively small synthetic microbial systems, understand the governing dynamics and provide insights into how to control such systems. This work is the first to query the existence of chaotic behaviour in synthetic microbial communities and has important ramifications for the fields of biotechnology, bioprocessing and synthetic biology.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bacteriocins</subject><subject>Bayesian analysis</subject><subject>Bayesian statistical decision theory</subject><subject>Behavior</subject><subject>Bioengineering</subject><subject>Biology and Life Sciences</subject><subject>Bioprocessing</subject><subject>Biotechnology</subject><subject>Chaos theory</subject><subject>Competition</subject><subject>Control systems</subject><subject>Kalman filters</subject><subject>Methods</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuLFDEQxxtR3HX1GwgOeFkPM6by7ouwDD4GFgXde8ijeiZDd2fsdIv77c04rTjiRXJIUfWrxz-pqnoOZAVMwet9mobetquDd3EFBIjg-kF1CUKwpWJCP_zDvqie5LwnpJi1fFxdMElBMEovq-v1zqa8iP0i3_fjDsfoF130Q3LRtgufum7q4xgxP60eNbbN-Gy-r6q7d2_v1h-Wt5_eb9Y3t0svgYzLGiUPTmjpOPMQHFEBqfCB-xKpGUXHFXegdKg1DxZ8Tb2ljXSy9hYJu6penMoe2pTNrDEbqopkzginhdiciJDs3hyG2Nnh3iQbzU9HGrbGDkVGi0ZRRAGqqdHVXBKw0KAGEKhlkI0MpdabudvkOgwe-3Gw7VnR80gfd2abvplaaC7ocdzrucCQvk6YR9PF7LFtbY9pOs5NmQbOpS7oy7_Qf6tbnaitLQJi36TS15cTsHxL6rGJxX-jKFcSymeWhFdnCYUZ8fu4tVPOZvPl83-wH89ZfmLLLuQ8YPP7VYCY4wL-Gt8cF9DMC8h-AGfIzJM</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Karkaria, Behzad D</creator><creator>Manhart, Angelika</creator><creator>Fedorec, Alex J. H</creator><creator>Barnes, Chris P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0165-1705</orcidid><orcidid>https://orcid.org/0000-0003-2627-9794</orcidid><orcidid>https://orcid.org/0000-0002-0303-8114</orcidid><orcidid>https://orcid.org/0000-0002-9459-1395</orcidid></search><sort><creationdate>20221001</creationdate><title>Chaos in synthetic microbial communities</title><author>Karkaria, Behzad D ; Manhart, Angelika ; Fedorec, Alex J. H ; Barnes, Chris P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-9e64db586b43c1db07de25cd4c9e6932eb474b178d984da1c92ca2f6b69cae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bacteriocins</topic><topic>Bayesian analysis</topic><topic>Bayesian statistical decision theory</topic><topic>Behavior</topic><topic>Bioengineering</topic><topic>Biology and Life Sciences</topic><topic>Bioprocessing</topic><topic>Biotechnology</topic><topic>Chaos theory</topic><topic>Competition</topic><topic>Control systems</topic><topic>Kalman filters</topic><topic>Methods</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karkaria, Behzad D</creatorcontrib><creatorcontrib>Manhart, Angelika</creatorcontrib><creatorcontrib>Fedorec, Alex J. H</creatorcontrib><creatorcontrib>Barnes, Chris P</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karkaria, Behzad D</au><au>Manhart, Angelika</au><au>Fedorec, Alex J. H</au><au>Barnes, Chris P</au><au>Rao, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos in synthetic microbial communities</atitle><jtitle>PLoS computational biology</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>18</volume><issue>10</issue><spage>e1010548</spage><epage>e1010548</epage><pages>e1010548-e1010548</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Predictability is a fundamental requirement in biological engineering. As we move to building coordinated multicellular systems, the potential for such systems to display chaotic behaviour becomes a concern. Therefore understanding which systems show chaos is an important design consideration. We developed a methodology to explore the potential for chaotic dynamics in small microbial communities governed by resource competition, intercellular communication and competitive bacteriocin interactions. Our model selection pipeline uses Approximate Bayesian Computation to first identify oscillatory behaviours as a route to finding chaotic behaviour. We have shown that we can expect to find chaotic states in relatively small synthetic microbial systems, understand the governing dynamics and provide insights into how to control such systems. This work is the first to query the existence of chaotic behaviour in synthetic microbial communities and has important ramifications for the fields of biotechnology, bioprocessing and synthetic biology.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36215322</pmid><doi>10.1371/journal.pcbi.1010548</doi><tpages>e1010548</tpages><orcidid>https://orcid.org/0000-0003-0165-1705</orcidid><orcidid>https://orcid.org/0000-0003-2627-9794</orcidid><orcidid>https://orcid.org/0000-0002-0303-8114</orcidid><orcidid>https://orcid.org/0000-0002-9459-1395</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2022-10, Vol.18 (10), p.e1010548-e1010548 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2737143042 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Algorithms Analysis Bacteriocins Bayesian analysis Bayesian statistical decision theory Behavior Bioengineering Biology and Life Sciences Bioprocessing Biotechnology Chaos theory Competition Control systems Kalman filters Methods Microbial activity Microbial colonies Microbiomes Microorganisms Physical Sciences Research and Analysis Methods Social Sciences |
title | Chaos in synthetic microbial communities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos%20in%20synthetic%20microbial%20communities&rft.jtitle=PLoS%20computational%20biology&rft.au=Karkaria,%20Behzad%20D&rft.date=2022-10-01&rft.volume=18&rft.issue=10&rft.spage=e1010548&rft.epage=e1010548&rft.pages=e1010548-e1010548&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010548&rft_dat=%3Cgale_plos_%3EA724761896%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737143042&rft_id=info:pmid/36215322&rft_galeid=A724761896&rft_doaj_id=oai_doaj_org_article_72ee517f9eb94601a1fe8115e86d6f6d&rfr_iscdi=true |