Chaos in synthetic microbial communities

Predictability is a fundamental requirement in biological engineering. As we move to building coordinated multicellular systems, the potential for such systems to display chaotic behaviour becomes a concern. Therefore understanding which systems show chaos is an important design consideration. We de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-10, Vol.18 (10), p.e1010548-e1010548
Hauptverfasser: Karkaria, Behzad D, Manhart, Angelika, Fedorec, Alex J. H, Barnes, Chris P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010548
container_issue 10
container_start_page e1010548
container_title PLoS computational biology
container_volume 18
creator Karkaria, Behzad D
Manhart, Angelika
Fedorec, Alex J. H
Barnes, Chris P
description Predictability is a fundamental requirement in biological engineering. As we move to building coordinated multicellular systems, the potential for such systems to display chaotic behaviour becomes a concern. Therefore understanding which systems show chaos is an important design consideration. We developed a methodology to explore the potential for chaotic dynamics in small microbial communities governed by resource competition, intercellular communication and competitive bacteriocin interactions. Our model selection pipeline uses Approximate Bayesian Computation to first identify oscillatory behaviours as a route to finding chaotic behaviour. We have shown that we can expect to find chaotic states in relatively small synthetic microbial systems, understand the governing dynamics and provide insights into how to control such systems. This work is the first to query the existence of chaotic behaviour in synthetic microbial communities and has important ramifications for the fields of biotechnology, bioprocessing and synthetic biology.
doi_str_mv 10.1371/journal.pcbi.1010548
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2737143042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724761896</galeid><doaj_id>oai_doaj_org_article_72ee517f9eb94601a1fe8115e86d6f6d</doaj_id><sourcerecordid>A724761896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-9e64db586b43c1db07de25cd4c9e6932eb474b178d984da1c92ca2f6b69cae03</originalsourceid><addsrcrecordid>eNqVkkuLFDEQxxtR3HX1GwgOeFkPM6by7ouwDD4GFgXde8ijeiZDd2fsdIv77c04rTjiRXJIUfWrxz-pqnoOZAVMwet9mobetquDd3EFBIjg-kF1CUKwpWJCP_zDvqie5LwnpJi1fFxdMElBMEovq-v1zqa8iP0i3_fjDsfoF130Q3LRtgufum7q4xgxP60eNbbN-Gy-r6q7d2_v1h-Wt5_eb9Y3t0svgYzLGiUPTmjpOPMQHFEBqfCB-xKpGUXHFXegdKg1DxZ8Tb2ljXSy9hYJu6penMoe2pTNrDEbqopkzginhdiciJDs3hyG2Nnh3iQbzU9HGrbGDkVGi0ZRRAGqqdHVXBKw0KAGEKhlkI0MpdabudvkOgwe-3Gw7VnR80gfd2abvplaaC7ocdzrucCQvk6YR9PF7LFtbY9pOs5NmQbOpS7oy7_Qf6tbnaitLQJi36TS15cTsHxL6rGJxX-jKFcSymeWhFdnCYUZ8fu4tVPOZvPl83-wH89ZfmLLLuQ8YPP7VYCY4wL-Gt8cF9DMC8h-AGfIzJM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737143042</pqid></control><display><type>article</type><title>Chaos in synthetic microbial communities</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Karkaria, Behzad D ; Manhart, Angelika ; Fedorec, Alex J. H ; Barnes, Chris P</creator><contributor>Rao, Christopher</contributor><creatorcontrib>Karkaria, Behzad D ; Manhart, Angelika ; Fedorec, Alex J. H ; Barnes, Chris P ; Rao, Christopher</creatorcontrib><description>Predictability is a fundamental requirement in biological engineering. As we move to building coordinated multicellular systems, the potential for such systems to display chaotic behaviour becomes a concern. Therefore understanding which systems show chaos is an important design consideration. We developed a methodology to explore the potential for chaotic dynamics in small microbial communities governed by resource competition, intercellular communication and competitive bacteriocin interactions. Our model selection pipeline uses Approximate Bayesian Computation to first identify oscillatory behaviours as a route to finding chaotic behaviour. We have shown that we can expect to find chaotic states in relatively small synthetic microbial systems, understand the governing dynamics and provide insights into how to control such systems. This work is the first to query the existence of chaotic behaviour in synthetic microbial communities and has important ramifications for the fields of biotechnology, bioprocessing and synthetic biology.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010548</identifier><identifier>PMID: 36215322</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Bacteriocins ; Bayesian analysis ; Bayesian statistical decision theory ; Behavior ; Bioengineering ; Biology and Life Sciences ; Bioprocessing ; Biotechnology ; Chaos theory ; Competition ; Control systems ; Kalman filters ; Methods ; Microbial activity ; Microbial colonies ; Microbiomes ; Microorganisms ; Physical Sciences ; Research and Analysis Methods ; Social Sciences</subject><ispartof>PLoS computational biology, 2022-10, Vol.18 (10), p.e1010548-e1010548</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Karkaria et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Karkaria et al 2022 Karkaria et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-9e64db586b43c1db07de25cd4c9e6932eb474b178d984da1c92ca2f6b69cae03</citedby><cites>FETCH-LOGICAL-c610t-9e64db586b43c1db07de25cd4c9e6932eb474b178d984da1c92ca2f6b69cae03</cites><orcidid>0000-0003-0165-1705 ; 0000-0003-2627-9794 ; 0000-0002-0303-8114 ; 0000-0002-9459-1395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584520/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584520/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids></links><search><contributor>Rao, Christopher</contributor><creatorcontrib>Karkaria, Behzad D</creatorcontrib><creatorcontrib>Manhart, Angelika</creatorcontrib><creatorcontrib>Fedorec, Alex J. H</creatorcontrib><creatorcontrib>Barnes, Chris P</creatorcontrib><title>Chaos in synthetic microbial communities</title><title>PLoS computational biology</title><description>Predictability is a fundamental requirement in biological engineering. As we move to building coordinated multicellular systems, the potential for such systems to display chaotic behaviour becomes a concern. Therefore understanding which systems show chaos is an important design consideration. We developed a methodology to explore the potential for chaotic dynamics in small microbial communities governed by resource competition, intercellular communication and competitive bacteriocin interactions. Our model selection pipeline uses Approximate Bayesian Computation to first identify oscillatory behaviours as a route to finding chaotic behaviour. We have shown that we can expect to find chaotic states in relatively small synthetic microbial systems, understand the governing dynamics and provide insights into how to control such systems. This work is the first to query the existence of chaotic behaviour in synthetic microbial communities and has important ramifications for the fields of biotechnology, bioprocessing and synthetic biology.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bacteriocins</subject><subject>Bayesian analysis</subject><subject>Bayesian statistical decision theory</subject><subject>Behavior</subject><subject>Bioengineering</subject><subject>Biology and Life Sciences</subject><subject>Bioprocessing</subject><subject>Biotechnology</subject><subject>Chaos theory</subject><subject>Competition</subject><subject>Control systems</subject><subject>Kalman filters</subject><subject>Methods</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuLFDEQxxtR3HX1GwgOeFkPM6by7ouwDD4GFgXde8ijeiZDd2fsdIv77c04rTjiRXJIUfWrxz-pqnoOZAVMwet9mobetquDd3EFBIjg-kF1CUKwpWJCP_zDvqie5LwnpJi1fFxdMElBMEovq-v1zqa8iP0i3_fjDsfoF130Q3LRtgufum7q4xgxP60eNbbN-Gy-r6q7d2_v1h-Wt5_eb9Y3t0svgYzLGiUPTmjpOPMQHFEBqfCB-xKpGUXHFXegdKg1DxZ8Tb2ljXSy9hYJu6penMoe2pTNrDEbqopkzginhdiciJDs3hyG2Nnh3iQbzU9HGrbGDkVGi0ZRRAGqqdHVXBKw0KAGEKhlkI0MpdabudvkOgwe-3Gw7VnR80gfd2abvplaaC7ocdzrucCQvk6YR9PF7LFtbY9pOs5NmQbOpS7oy7_Qf6tbnaitLQJi36TS15cTsHxL6rGJxX-jKFcSymeWhFdnCYUZ8fu4tVPOZvPl83-wH89ZfmLLLuQ8YPP7VYCY4wL-Gt8cF9DMC8h-AGfIzJM</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Karkaria, Behzad D</creator><creator>Manhart, Angelika</creator><creator>Fedorec, Alex J. H</creator><creator>Barnes, Chris P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0165-1705</orcidid><orcidid>https://orcid.org/0000-0003-2627-9794</orcidid><orcidid>https://orcid.org/0000-0002-0303-8114</orcidid><orcidid>https://orcid.org/0000-0002-9459-1395</orcidid></search><sort><creationdate>20221001</creationdate><title>Chaos in synthetic microbial communities</title><author>Karkaria, Behzad D ; Manhart, Angelika ; Fedorec, Alex J. H ; Barnes, Chris P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-9e64db586b43c1db07de25cd4c9e6932eb474b178d984da1c92ca2f6b69cae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bacteriocins</topic><topic>Bayesian analysis</topic><topic>Bayesian statistical decision theory</topic><topic>Behavior</topic><topic>Bioengineering</topic><topic>Biology and Life Sciences</topic><topic>Bioprocessing</topic><topic>Biotechnology</topic><topic>Chaos theory</topic><topic>Competition</topic><topic>Control systems</topic><topic>Kalman filters</topic><topic>Methods</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karkaria, Behzad D</creatorcontrib><creatorcontrib>Manhart, Angelika</creatorcontrib><creatorcontrib>Fedorec, Alex J. H</creatorcontrib><creatorcontrib>Barnes, Chris P</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karkaria, Behzad D</au><au>Manhart, Angelika</au><au>Fedorec, Alex J. H</au><au>Barnes, Chris P</au><au>Rao, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos in synthetic microbial communities</atitle><jtitle>PLoS computational biology</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>18</volume><issue>10</issue><spage>e1010548</spage><epage>e1010548</epage><pages>e1010548-e1010548</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Predictability is a fundamental requirement in biological engineering. As we move to building coordinated multicellular systems, the potential for such systems to display chaotic behaviour becomes a concern. Therefore understanding which systems show chaos is an important design consideration. We developed a methodology to explore the potential for chaotic dynamics in small microbial communities governed by resource competition, intercellular communication and competitive bacteriocin interactions. Our model selection pipeline uses Approximate Bayesian Computation to first identify oscillatory behaviours as a route to finding chaotic behaviour. We have shown that we can expect to find chaotic states in relatively small synthetic microbial systems, understand the governing dynamics and provide insights into how to control such systems. This work is the first to query the existence of chaotic behaviour in synthetic microbial communities and has important ramifications for the fields of biotechnology, bioprocessing and synthetic biology.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36215322</pmid><doi>10.1371/journal.pcbi.1010548</doi><tpages>e1010548</tpages><orcidid>https://orcid.org/0000-0003-0165-1705</orcidid><orcidid>https://orcid.org/0000-0003-2627-9794</orcidid><orcidid>https://orcid.org/0000-0002-0303-8114</orcidid><orcidid>https://orcid.org/0000-0002-9459-1395</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2022-10, Vol.18 (10), p.e1010548-e1010548
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2737143042
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Algorithms
Analysis
Bacteriocins
Bayesian analysis
Bayesian statistical decision theory
Behavior
Bioengineering
Biology and Life Sciences
Bioprocessing
Biotechnology
Chaos theory
Competition
Control systems
Kalman filters
Methods
Microbial activity
Microbial colonies
Microbiomes
Microorganisms
Physical Sciences
Research and Analysis Methods
Social Sciences
title Chaos in synthetic microbial communities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos%20in%20synthetic%20microbial%20communities&rft.jtitle=PLoS%20computational%20biology&rft.au=Karkaria,%20Behzad%20D&rft.date=2022-10-01&rft.volume=18&rft.issue=10&rft.spage=e1010548&rft.epage=e1010548&rft.pages=e1010548-e1010548&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010548&rft_dat=%3Cgale_plos_%3EA724761896%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737143042&rft_id=info:pmid/36215322&rft_galeid=A724761896&rft_doaj_id=oai_doaj_org_article_72ee517f9eb94601a1fe8115e86d6f6d&rfr_iscdi=true