Estimation of the stress-strength reliability for the inverse Weibull distribution under adaptive type-II progressive hybrid censoring

In this article, we compare the maximum likelihood estimate (MLE) and the maximum product of spacing estimate (MPSE) of a stress-strength reliability model, θ = P(Y < X), under adaptive progressive type-II progressive hybrid censoring, when X and Y are independent random variables taken from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-11, Vol.17 (11), p.e0277514-e0277514
Hauptverfasser: Alslman, Majd, Helu, Amal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0277514
container_issue 11
container_start_page e0277514
container_title PloS one
container_volume 17
creator Alslman, Majd
Helu, Amal
description In this article, we compare the maximum likelihood estimate (MLE) and the maximum product of spacing estimate (MPSE) of a stress-strength reliability model, θ = P(Y < X), under adaptive progressive type-II progressive hybrid censoring, when X and Y are independent random variables taken from the inverse Weibull distribution (IWD) with the same shape parameter and different scale parameters. The performance of both estimators is compared, through a comprehensive computer simulation based on two criteria, namely bias and mean squared error (MSE). To demonstrate the effectiveness of our proposed methods, we used two examples of real-life data based on Breakdown Times of an Insulated Fluid by (Nelson, 2003) and Head and Neck Cancer Data by (Efron, 1988). It is concluded that the MPSE method outperformed the MLE method in terms of bias and MSE values.
doi_str_mv 10.1371/journal.pone.0277514
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2736632430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726670429</galeid><doaj_id>oai_doaj_org_article_1a6a52ebfbb2436099f83d480a203001</doaj_id><sourcerecordid>A726670429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-585b87490bf9ad5358e564b65cd24c5c36175c2882075ede5e9115fe6cbcd1663</originalsourceid><addsrcrecordid>eNqNk9-K1DAUxoso7rr6BqIFQfSiY5o0aXsjLMuqAwsL_r0MaXraZsg03SRdnBfwuU1nustU9kJykXDyO19yvuRE0csUrVKSpx82ZrS90KvB9LBCOM9pmj2KTtOS4IRhRB4frU-iZ85tEKKkYOxpdEIYyQtGstPoz6Xzaiu8Mn1smth3EDtvwblkmvrWd7EFrUSltPK7uDF2z6j-FqyD-BeoatQ6rlXAw3KvM_Y12FjUYvDqFmK_GyBZr-PBmnZSnmLdrrKqjiX0zljVt8-jJ43QDl7M81n049Pl94svydX15_XF-VUiWYl9QgtaFXlWoqopRU0JLYCyrGJU1jiTVBKW5lTiosAop1ADhTJNaQNMVrJOGSNn0euD7qCN47OFjuOchE2cERSI9YGojdjwwQZz7I4bofg-YGzLhfVKauCpYIJiqJqqCqkMlWVTkDorkAiWI5QGrY_zaWO1hTpU663QC9HlTq863ppbXjJGSUmCwLtZwJqbEZznW-UkaC16MON8b0YxwwF98w_6cHUz1YpQgOobE86Vkyg_zzFjOcpwGajVA1QYNWyVDP-tUSG-SHi_SAiMh9--FaNzfP3t6_-z1z-X7NsjtgOhfeeM3n8ztwSzAyitcc5Cc29yivjULndu8Kld-NwuIe3V8QPdJ931B_kLVmcR8A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736632430</pqid></control><display><type>article</type><title>Estimation of the stress-strength reliability for the inverse Weibull distribution under adaptive type-II progressive hybrid censoring</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed (Medline)</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Alslman, Majd ; Helu, Amal</creator><contributor>Yu, Lili</contributor><creatorcontrib>Alslman, Majd ; Helu, Amal ; Yu, Lili</creatorcontrib><description>In this article, we compare the maximum likelihood estimate (MLE) and the maximum product of spacing estimate (MPSE) of a stress-strength reliability model, θ = P(Y &lt; X), under adaptive progressive type-II progressive hybrid censoring, when X and Y are independent random variables taken from the inverse Weibull distribution (IWD) with the same shape parameter and different scale parameters. The performance of both estimators is compared, through a comprehensive computer simulation based on two criteria, namely bias and mean squared error (MSE). To demonstrate the effectiveness of our proposed methods, we used two examples of real-life data based on Breakdown Times of an Insulated Fluid by (Nelson, 2003) and Head and Neck Cancer Data by (Efron, 1988). It is concluded that the MPSE method outperformed the MLE method in terms of bias and MSE values.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0277514</identifier><identifier>PMID: 36378634</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Approximation ; Bias ; Censorship ; Computer Simulation ; Evaluation ; Experiments ; Failure ; Head &amp; neck cancer ; Head and neck cancer ; Independent variables ; Likelihood Functions ; Maximum likelihood estimates ; Medicine and Health Sciences ; Parameters ; Physical Sciences ; Radiation therapy ; Random variables ; Reliability ; Reliability analysis ; Reproducibility of Results ; Research and Analysis Methods ; Simulation methods ; Statistical Distributions ; Weibull distribution</subject><ispartof>PloS one, 2022-11, Vol.17 (11), p.e0277514-e0277514</ispartof><rights>Copyright: © 2022 Alslman, Helu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Alslman, Helu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Alslman, Helu 2022 Alslman, Helu</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-585b87490bf9ad5358e564b65cd24c5c36175c2882075ede5e9115fe6cbcd1663</citedby><cites>FETCH-LOGICAL-c692t-585b87490bf9ad5358e564b65cd24c5c36175c2882075ede5e9115fe6cbcd1663</cites><orcidid>0000-0002-1958-8161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9665393/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9665393/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36378634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yu, Lili</contributor><creatorcontrib>Alslman, Majd</creatorcontrib><creatorcontrib>Helu, Amal</creatorcontrib><title>Estimation of the stress-strength reliability for the inverse Weibull distribution under adaptive type-II progressive hybrid censoring</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this article, we compare the maximum likelihood estimate (MLE) and the maximum product of spacing estimate (MPSE) of a stress-strength reliability model, θ = P(Y &lt; X), under adaptive progressive type-II progressive hybrid censoring, when X and Y are independent random variables taken from the inverse Weibull distribution (IWD) with the same shape parameter and different scale parameters. The performance of both estimators is compared, through a comprehensive computer simulation based on two criteria, namely bias and mean squared error (MSE). To demonstrate the effectiveness of our proposed methods, we used two examples of real-life data based on Breakdown Times of an Insulated Fluid by (Nelson, 2003) and Head and Neck Cancer Data by (Efron, 1988). It is concluded that the MPSE method outperformed the MLE method in terms of bias and MSE values.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Bias</subject><subject>Censorship</subject><subject>Computer Simulation</subject><subject>Evaluation</subject><subject>Experiments</subject><subject>Failure</subject><subject>Head &amp; neck cancer</subject><subject>Head and neck cancer</subject><subject>Independent variables</subject><subject>Likelihood Functions</subject><subject>Maximum likelihood estimates</subject><subject>Medicine and Health Sciences</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Radiation therapy</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Simulation methods</subject><subject>Statistical Distributions</subject><subject>Weibull distribution</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-K1DAUxoso7rr6BqIFQfSiY5o0aXsjLMuqAwsL_r0MaXraZsg03SRdnBfwuU1nustU9kJykXDyO19yvuRE0csUrVKSpx82ZrS90KvB9LBCOM9pmj2KTtOS4IRhRB4frU-iZ85tEKKkYOxpdEIYyQtGstPoz6Xzaiu8Mn1smth3EDtvwblkmvrWd7EFrUSltPK7uDF2z6j-FqyD-BeoatQ6rlXAw3KvM_Y12FjUYvDqFmK_GyBZr-PBmnZSnmLdrrKqjiX0zljVt8-jJ43QDl7M81n049Pl94svydX15_XF-VUiWYl9QgtaFXlWoqopRU0JLYCyrGJU1jiTVBKW5lTiosAop1ADhTJNaQNMVrJOGSNn0euD7qCN47OFjuOchE2cERSI9YGojdjwwQZz7I4bofg-YGzLhfVKauCpYIJiqJqqCqkMlWVTkDorkAiWI5QGrY_zaWO1hTpU663QC9HlTq863ppbXjJGSUmCwLtZwJqbEZznW-UkaC16MON8b0YxwwF98w_6cHUz1YpQgOobE86Vkyg_zzFjOcpwGajVA1QYNWyVDP-tUSG-SHi_SAiMh9--FaNzfP3t6_-z1z-X7NsjtgOhfeeM3n8ztwSzAyitcc5Cc29yivjULndu8Kld-NwuIe3V8QPdJ931B_kLVmcR8A</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Alslman, Majd</creator><creator>Helu, Amal</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1958-8161</orcidid></search><sort><creationdate>20221115</creationdate><title>Estimation of the stress-strength reliability for the inverse Weibull distribution under adaptive type-II progressive hybrid censoring</title><author>Alslman, Majd ; Helu, Amal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-585b87490bf9ad5358e564b65cd24c5c36175c2882075ede5e9115fe6cbcd1663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Bias</topic><topic>Censorship</topic><topic>Computer Simulation</topic><topic>Evaluation</topic><topic>Experiments</topic><topic>Failure</topic><topic>Head &amp; neck cancer</topic><topic>Head and neck cancer</topic><topic>Independent variables</topic><topic>Likelihood Functions</topic><topic>Maximum likelihood estimates</topic><topic>Medicine and Health Sciences</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Radiation therapy</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Simulation methods</topic><topic>Statistical Distributions</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alslman, Majd</creatorcontrib><creatorcontrib>Helu, Amal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Proquest Health &amp; Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alslman, Majd</au><au>Helu, Amal</au><au>Yu, Lili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the stress-strength reliability for the inverse Weibull distribution under adaptive type-II progressive hybrid censoring</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-11-15</date><risdate>2022</risdate><volume>17</volume><issue>11</issue><spage>e0277514</spage><epage>e0277514</epage><pages>e0277514-e0277514</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this article, we compare the maximum likelihood estimate (MLE) and the maximum product of spacing estimate (MPSE) of a stress-strength reliability model, θ = P(Y &lt; X), under adaptive progressive type-II progressive hybrid censoring, when X and Y are independent random variables taken from the inverse Weibull distribution (IWD) with the same shape parameter and different scale parameters. The performance of both estimators is compared, through a comprehensive computer simulation based on two criteria, namely bias and mean squared error (MSE). To demonstrate the effectiveness of our proposed methods, we used two examples of real-life data based on Breakdown Times of an Insulated Fluid by (Nelson, 2003) and Head and Neck Cancer Data by (Efron, 1988). It is concluded that the MPSE method outperformed the MLE method in terms of bias and MSE values.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36378634</pmid><doi>10.1371/journal.pone.0277514</doi><tpages>e0277514</tpages><orcidid>https://orcid.org/0000-0002-1958-8161</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-11, Vol.17 (11), p.e0277514-e0277514
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2736632430
source Public Library of Science (PLoS) Journals Open Access; PubMed (Medline); MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Analysis
Approximation
Bias
Censorship
Computer Simulation
Evaluation
Experiments
Failure
Head & neck cancer
Head and neck cancer
Independent variables
Likelihood Functions
Maximum likelihood estimates
Medicine and Health Sciences
Parameters
Physical Sciences
Radiation therapy
Random variables
Reliability
Reliability analysis
Reproducibility of Results
Research and Analysis Methods
Simulation methods
Statistical Distributions
Weibull distribution
title Estimation of the stress-strength reliability for the inverse Weibull distribution under adaptive type-II progressive hybrid censoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20stress-strength%20reliability%20for%20the%20inverse%20Weibull%20distribution%20under%20adaptive%20type-II%20progressive%20hybrid%20censoring&rft.jtitle=PloS%20one&rft.au=Alslman,%20Majd&rft.date=2022-11-15&rft.volume=17&rft.issue=11&rft.spage=e0277514&rft.epage=e0277514&rft.pages=e0277514-e0277514&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0277514&rft_dat=%3Cgale_plos_%3EA726670429%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736632430&rft_id=info:pmid/36378634&rft_galeid=A726670429&rft_doaj_id=oai_doaj_org_article_1a6a52ebfbb2436099f83d480a203001&rfr_iscdi=true