Reliability of COVID-19 data: An evaluation and reflection

The rapid proliferation of COVID-19 has left governments scrambling, and several data aggregators are now assisting in the reporting of county cases and deaths. The different variables affecting reporting (e.g., time delays in reporting) necessitates a well-documented reliability study examining the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-11, Vol.17 (11), p.e0251470
Hauptverfasser: Miller, April R, Charepoo, Samin, Yan, Erik, Frost, Ryan W, Sturgeon, Zachary J, Gibbon, Grace, Balius, Patrick N, Thomas, Cedonia S, Schmitt, Melanie A, Sass, Daniel A, Walters, James B, Flood, Tracy L, Schmitt, Thomas A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e0251470
container_title PloS one
container_volume 17
creator Miller, April R
Charepoo, Samin
Yan, Erik
Frost, Ryan W
Sturgeon, Zachary J
Gibbon, Grace
Balius, Patrick N
Thomas, Cedonia S
Schmitt, Melanie A
Sass, Daniel A
Walters, James B
Flood, Tracy L
Schmitt, Thomas A
description The rapid proliferation of COVID-19 has left governments scrambling, and several data aggregators are now assisting in the reporting of county cases and deaths. The different variables affecting reporting (e.g., time delays in reporting) necessitates a well-documented reliability study examining the data methods and discussion of possible causes of differences between aggregators. To statistically evaluate the reliability of COVID-19 data across aggregators using case fatality rate (CFR) estimates and reliability statistics. Cases and deaths were collected daily by volunteers via state and local health departments, as primary sources and newspaper reports, as secondary sources. In an effort to begin comparison for reliability statistical analysis, BroadStreet collected data from other COVID-19 aggregator sources, including USAFacts, Johns Hopkins University, New York Times, The COVID Tracking Project. COVID-19 cases and death counts at the county and state levels. Lower levels of inter-rater agreement were observed across aggregators associated with the number of deaths, which manifested itself in state level Bayesian estimates of COVID-19 fatality rates. A national, publicly available data set is needed for current and future disease outbreaks and improved reliability in reporting.
doi_str_mv 10.1371/journal.pone.0251470
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2731704751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724977636</galeid><doaj_id>oai_doaj_org_article_aa48ca639fd148c1b7152de90b366d0a</doaj_id><sourcerecordid>A724977636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-7478831677ec133c2e64816a11e0bb18d3058393eef8211ef4bc7404d12545d53</originalsourceid><addsrcrecordid>eNqNkk2P0zAQhiMEYpfCP0AQCQnBIcVfsZM9IFXlq9JKlRbYqzWxndaVG5c4WbH_HodmVw3aA_IhzviZ1zPjN0leYjTHVOAPO9-3Dbj5wTdmjkiOmUCPknNcUpJxgujjk_1Z8iyEHUI5LTh_mpxRTokggp4nF1fGWaiss91t6ut0ub5efcpwmWro4CJdNKm5AddDZ32TQqPT1tTOqOH3efKkBhfMi_E7S35--fxj-S27XH9dLReXmeIl6TLBRFFQzIUwClOqiOGswBwwNqiqcKEpygtaUmPqgsRgzSolGGIak5zlOqez5PVR9-B8kGPbQcbysUBM5DgSqyOhPezkobV7aG-lByv_Bny7kdB2VjkjAVihgNOy1jjucCVwTrQpUUU51wii1sfxtr7aG61M07XgJqLTk8Zu5cbfyDLOtGBDMe9Ggdb_6k3o5N4GZZyDxvh-rBsLygf0zT_ow92N1AZiA7apfbxXDaJyIQgrheDxPWfJ_AEqLm32VkWP1DbGJwnvJwmR6czvbgN9CHL1_er_2fX1lH17wm4NuG4bvOsHy4QpyI6gan0I0Vf3Q8ZIDha_m4YcLC5Hi8e0V6cPdJ9052n6B89U8lM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731704751</pqid></control><display><type>article</type><title>Reliability of COVID-19 data: An evaluation and reflection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Miller, April R ; Charepoo, Samin ; Yan, Erik ; Frost, Ryan W ; Sturgeon, Zachary J ; Gibbon, Grace ; Balius, Patrick N ; Thomas, Cedonia S ; Schmitt, Melanie A ; Sass, Daniel A ; Walters, James B ; Flood, Tracy L ; Schmitt, Thomas A</creator><creatorcontrib>Miller, April R ; Charepoo, Samin ; Yan, Erik ; Frost, Ryan W ; Sturgeon, Zachary J ; Gibbon, Grace ; Balius, Patrick N ; Thomas, Cedonia S ; Schmitt, Melanie A ; Sass, Daniel A ; Walters, James B ; Flood, Tracy L ; Schmitt, Thomas A ; COVID-19 Data Project ; on behalf of the COVID-19 Data Project</creatorcontrib><description>The rapid proliferation of COVID-19 has left governments scrambling, and several data aggregators are now assisting in the reporting of county cases and deaths. The different variables affecting reporting (e.g., time delays in reporting) necessitates a well-documented reliability study examining the data methods and discussion of possible causes of differences between aggregators. To statistically evaluate the reliability of COVID-19 data across aggregators using case fatality rate (CFR) estimates and reliability statistics. Cases and deaths were collected daily by volunteers via state and local health departments, as primary sources and newspaper reports, as secondary sources. In an effort to begin comparison for reliability statistical analysis, BroadStreet collected data from other COVID-19 aggregator sources, including USAFacts, Johns Hopkins University, New York Times, The COVID Tracking Project. COVID-19 cases and death counts at the county and state levels. Lower levels of inter-rater agreement were observed across aggregators associated with the number of deaths, which manifested itself in state level Bayesian estimates of COVID-19 fatality rates. A national, publicly available data set is needed for current and future disease outbreaks and improved reliability in reporting.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0251470</identifier><identifier>PMID: 36327273</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Colleges &amp; universities ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; Data collection ; Disease control ; Disease Outbreaks ; Engineering and Technology ; Epidemics ; Estimates ; Evaluation ; Fatalities ; Geospatial data ; Health surveillance ; Humans ; Infectious diseases ; Medical research ; Medicine and Health Sciences ; New York ; Pandemics ; People and places ; Physical Sciences ; Public health ; Quality control ; Reliability analysis ; Reproducibility of Results ; Statistical analysis ; Statistics ; Timing ; United States ; Viral diseases</subject><ispartof>PloS one, 2022-11, Vol.17 (11), p.e0251470</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Miller et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Miller et al 2022 Miller et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-7478831677ec133c2e64816a11e0bb18d3058393eef8211ef4bc7404d12545d53</citedby><cites>FETCH-LOGICAL-c692t-7478831677ec133c2e64816a11e0bb18d3058393eef8211ef4bc7404d12545d53</cites><orcidid>0000-0003-2612-993X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632841/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632841/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36327273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, April R</creatorcontrib><creatorcontrib>Charepoo, Samin</creatorcontrib><creatorcontrib>Yan, Erik</creatorcontrib><creatorcontrib>Frost, Ryan W</creatorcontrib><creatorcontrib>Sturgeon, Zachary J</creatorcontrib><creatorcontrib>Gibbon, Grace</creatorcontrib><creatorcontrib>Balius, Patrick N</creatorcontrib><creatorcontrib>Thomas, Cedonia S</creatorcontrib><creatorcontrib>Schmitt, Melanie A</creatorcontrib><creatorcontrib>Sass, Daniel A</creatorcontrib><creatorcontrib>Walters, James B</creatorcontrib><creatorcontrib>Flood, Tracy L</creatorcontrib><creatorcontrib>Schmitt, Thomas A</creatorcontrib><creatorcontrib>COVID-19 Data Project</creatorcontrib><creatorcontrib>on behalf of the COVID-19 Data Project</creatorcontrib><title>Reliability of COVID-19 data: An evaluation and reflection</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The rapid proliferation of COVID-19 has left governments scrambling, and several data aggregators are now assisting in the reporting of county cases and deaths. The different variables affecting reporting (e.g., time delays in reporting) necessitates a well-documented reliability study examining the data methods and discussion of possible causes of differences between aggregators. To statistically evaluate the reliability of COVID-19 data across aggregators using case fatality rate (CFR) estimates and reliability statistics. Cases and deaths were collected daily by volunteers via state and local health departments, as primary sources and newspaper reports, as secondary sources. In an effort to begin comparison for reliability statistical analysis, BroadStreet collected data from other COVID-19 aggregator sources, including USAFacts, Johns Hopkins University, New York Times, The COVID Tracking Project. COVID-19 cases and death counts at the county and state levels. Lower levels of inter-rater agreement were observed across aggregators associated with the number of deaths, which manifested itself in state level Bayesian estimates of COVID-19 fatality rates. A national, publicly available data set is needed for current and future disease outbreaks and improved reliability in reporting.</description><subject>Analysis</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Colleges &amp; universities</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>Data collection</subject><subject>Disease control</subject><subject>Disease Outbreaks</subject><subject>Engineering and Technology</subject><subject>Epidemics</subject><subject>Estimates</subject><subject>Evaluation</subject><subject>Fatalities</subject><subject>Geospatial data</subject><subject>Health surveillance</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>New York</subject><subject>Pandemics</subject><subject>People and places</subject><subject>Physical Sciences</subject><subject>Public health</subject><subject>Quality control</subject><subject>Reliability analysis</subject><subject>Reproducibility of Results</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Timing</subject><subject>United States</subject><subject>Viral diseases</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk2P0zAQhiMEYpfCP0AQCQnBIcVfsZM9IFXlq9JKlRbYqzWxndaVG5c4WbH_HodmVw3aA_IhzviZ1zPjN0leYjTHVOAPO9-3Dbj5wTdmjkiOmUCPknNcUpJxgujjk_1Z8iyEHUI5LTh_mpxRTokggp4nF1fGWaiss91t6ut0ub5efcpwmWro4CJdNKm5AddDZ32TQqPT1tTOqOH3efKkBhfMi_E7S35--fxj-S27XH9dLReXmeIl6TLBRFFQzIUwClOqiOGswBwwNqiqcKEpygtaUmPqgsRgzSolGGIak5zlOqez5PVR9-B8kGPbQcbysUBM5DgSqyOhPezkobV7aG-lByv_Bny7kdB2VjkjAVihgNOy1jjucCVwTrQpUUU51wii1sfxtr7aG61M07XgJqLTk8Zu5cbfyDLOtGBDMe9Ggdb_6k3o5N4GZZyDxvh-rBsLygf0zT_ow92N1AZiA7apfbxXDaJyIQgrheDxPWfJ_AEqLm32VkWP1DbGJwnvJwmR6czvbgN9CHL1_er_2fX1lH17wm4NuG4bvOsHy4QpyI6gan0I0Vf3Q8ZIDha_m4YcLC5Hi8e0V6cPdJ9052n6B89U8lM</recordid><startdate>20221103</startdate><enddate>20221103</enddate><creator>Miller, April R</creator><creator>Charepoo, Samin</creator><creator>Yan, Erik</creator><creator>Frost, Ryan W</creator><creator>Sturgeon, Zachary J</creator><creator>Gibbon, Grace</creator><creator>Balius, Patrick N</creator><creator>Thomas, Cedonia S</creator><creator>Schmitt, Melanie A</creator><creator>Sass, Daniel A</creator><creator>Walters, James B</creator><creator>Flood, Tracy L</creator><creator>Schmitt, Thomas A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2612-993X</orcidid></search><sort><creationdate>20221103</creationdate><title>Reliability of COVID-19 data: An evaluation and reflection</title><author>Miller, April R ; Charepoo, Samin ; Yan, Erik ; Frost, Ryan W ; Sturgeon, Zachary J ; Gibbon, Grace ; Balius, Patrick N ; Thomas, Cedonia S ; Schmitt, Melanie A ; Sass, Daniel A ; Walters, James B ; Flood, Tracy L ; Schmitt, Thomas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-7478831677ec133c2e64816a11e0bb18d3058393eef8211ef4bc7404d12545d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Colleges &amp; universities</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>Data collection</topic><topic>Disease control</topic><topic>Disease Outbreaks</topic><topic>Engineering and Technology</topic><topic>Epidemics</topic><topic>Estimates</topic><topic>Evaluation</topic><topic>Fatalities</topic><topic>Geospatial data</topic><topic>Health surveillance</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>New York</topic><topic>Pandemics</topic><topic>People and places</topic><topic>Physical Sciences</topic><topic>Public health</topic><topic>Quality control</topic><topic>Reliability analysis</topic><topic>Reproducibility of Results</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Timing</topic><topic>United States</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, April R</creatorcontrib><creatorcontrib>Charepoo, Samin</creatorcontrib><creatorcontrib>Yan, Erik</creatorcontrib><creatorcontrib>Frost, Ryan W</creatorcontrib><creatorcontrib>Sturgeon, Zachary J</creatorcontrib><creatorcontrib>Gibbon, Grace</creatorcontrib><creatorcontrib>Balius, Patrick N</creatorcontrib><creatorcontrib>Thomas, Cedonia S</creatorcontrib><creatorcontrib>Schmitt, Melanie A</creatorcontrib><creatorcontrib>Sass, Daniel A</creatorcontrib><creatorcontrib>Walters, James B</creatorcontrib><creatorcontrib>Flood, Tracy L</creatorcontrib><creatorcontrib>Schmitt, Thomas A</creatorcontrib><creatorcontrib>COVID-19 Data Project</creatorcontrib><creatorcontrib>on behalf of the COVID-19 Data Project</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, April R</au><au>Charepoo, Samin</au><au>Yan, Erik</au><au>Frost, Ryan W</au><au>Sturgeon, Zachary J</au><au>Gibbon, Grace</au><au>Balius, Patrick N</au><au>Thomas, Cedonia S</au><au>Schmitt, Melanie A</au><au>Sass, Daniel A</au><au>Walters, James B</au><au>Flood, Tracy L</au><au>Schmitt, Thomas A</au><aucorp>COVID-19 Data Project</aucorp><aucorp>on behalf of the COVID-19 Data Project</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability of COVID-19 data: An evaluation and reflection</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-11-03</date><risdate>2022</risdate><volume>17</volume><issue>11</issue><spage>e0251470</spage><pages>e0251470-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The rapid proliferation of COVID-19 has left governments scrambling, and several data aggregators are now assisting in the reporting of county cases and deaths. The different variables affecting reporting (e.g., time delays in reporting) necessitates a well-documented reliability study examining the data methods and discussion of possible causes of differences between aggregators. To statistically evaluate the reliability of COVID-19 data across aggregators using case fatality rate (CFR) estimates and reliability statistics. Cases and deaths were collected daily by volunteers via state and local health departments, as primary sources and newspaper reports, as secondary sources. In an effort to begin comparison for reliability statistical analysis, BroadStreet collected data from other COVID-19 aggregator sources, including USAFacts, Johns Hopkins University, New York Times, The COVID Tracking Project. COVID-19 cases and death counts at the county and state levels. Lower levels of inter-rater agreement were observed across aggregators associated with the number of deaths, which manifested itself in state level Bayesian estimates of COVID-19 fatality rates. A national, publicly available data set is needed for current and future disease outbreaks and improved reliability in reporting.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36327273</pmid><doi>10.1371/journal.pone.0251470</doi><tpages>e0251470</tpages><orcidid>https://orcid.org/0000-0003-2612-993X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-11, Vol.17 (11), p.e0251470
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2731704751
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Analysis
Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Colleges & universities
Coronaviruses
COVID-19
COVID-19 - epidemiology
Data collection
Disease control
Disease Outbreaks
Engineering and Technology
Epidemics
Estimates
Evaluation
Fatalities
Geospatial data
Health surveillance
Humans
Infectious diseases
Medical research
Medicine and Health Sciences
New York
Pandemics
People and places
Physical Sciences
Public health
Quality control
Reliability analysis
Reproducibility of Results
Statistical analysis
Statistics
Timing
United States
Viral diseases
title Reliability of COVID-19 data: An evaluation and reflection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20of%20COVID-19%20data:%20An%20evaluation%20and%20reflection&rft.jtitle=PloS%20one&rft.au=Miller,%20April%20R&rft.aucorp=COVID-19%20Data%20Project&rft.date=2022-11-03&rft.volume=17&rft.issue=11&rft.spage=e0251470&rft.pages=e0251470-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0251470&rft_dat=%3Cgale_plos_%3EA724977636%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731704751&rft_id=info:pmid/36327273&rft_galeid=A724977636&rft_doaj_id=oai_doaj_org_article_aa48ca639fd148c1b7152de90b366d0a&rfr_iscdi=true